期刊文献+
共找到494篇文章
< 1 2 25 >
每页显示 20 50 100
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
1
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces electromagnetic wave absorption Corrosion protection
在线阅读 下载PDF
Low‑Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption 被引量:1
2
作者 Zizhuang He Lingzi Shi +6 位作者 Ran Sun Lianfei Ding Mukun He Jiaming Li Hua Guo Tiande Gao Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期191-204,共14页
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan... Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption. 展开更多
关键词 Magnetic heterointerfaces Phase evolution Interfacial polarization Magnetic coupling electromagnetic wave absorption
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
3
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites electromagnetic wave absorption
在线阅读 下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption 被引量:1
4
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling electromagnetic wave absorption
在线阅读 下载PDF
Phase changes and electromagnetic wave absorption performance of XZnC(X=Fe/Co/Cu)loaded on melamine sponge hollow carbon composites 被引量:3
5
作者 Xiubo Xie Ruilin Liu +4 位作者 Chen Chen Di Lan Zhelin Chen Wei Du Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期566-577,共12页
Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melami... Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melamine sponge(MS)carbon composites were investigated through vacuum filtration followed by calcination.The FeZnC/CoZnC/CuZnC with carbon nanotubes(CNTs)were uniformly dispersed on the surface of melamine sponge carbon skeleton and Co-containing sample exhibits the highest CNTs concentration.The minimum reflection loss(RL_(min))of the CoZnC/MS composite(m_(composite):m_(paraffin)=1:1,m represents mass)reached-33.60 dB,and the effective absorption bandwidth(EAB)reached 9.60 GHz.The outstanding electromagnetic wave absorption(EMWA)properties of the CoZnC/MS composite can be attributed to its unique hollow structure,which leads to multiple reflections and scattering.The formed conductive network improves dielectric and conductive loss.The incorporation of Co enhances the magnetic loss capability and optimizes interfacial polarization and dipole polarization.By simultaneously improving dielectric and magnetic losses,ex-cellent impedance matching performance is achieved.The clarification of element replacement in XZnC/MS composites provides an effi-cient design perspective for high-performance non-stoichiometric carbide EMW absorbers. 展开更多
关键词 electromagnetic wave absorption three dimensional network structure melamine sponge derived carbon non-stoichiometric carbide
在线阅读 下载PDF
Multi-interface structure design of bamboo-based carbon/Co/CoO composite electromagnetic wave absorber based on biomimetic honeycomb-shaped superstructure 被引量:2
6
作者 Yanting Wang He Han +2 位作者 Huiyang Bian Yanjun Li Zhichao Lou 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期631-644,共14页
The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through ... The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through nanostructure design and interface modifica-tion has proven to be an effective strategy to obtain efficient electromagnetic wave absorption.Here,this work implements an innovative method that combines biomimetic honeycomb superstructure to constrain hierarchical porous heterostructure composed of Co/CoO nano-particles to improve the interfacial polarization intensity.The method effectively controlled the absorption efficiency of Co^(2+)through de-lignification modification of bamboo,and combined with the bionic carbon-based natural hierarchical porous structure to achieve uniform dispersion of nanoparticles,which is conducive to the in-depth construction of heterogeneous interfaces.In addition,the multiphase struc-ture brought about by high-temperature pyrolysis provides the best dielectric loss and impedance matching for the material.Therefore,the obtained bamboo-based Co/CoO multiphase composite showed excellent electromagnetic wave absorption performance,achieving excel-lent reflection loss(RL)of-79 dB and effective absorption band width of 4.12 GHz(6.84-10.96 GHz)at low load of 15wt%.Among them,the material’s optimal radar cross-section(RCS)reduction value can reach 31.9 dB·m^(2).This work provides a new approach to the micro-control and comprehensive optimization of macro-design of microwave absorbers,and offers new ideas for the high-value utiliza-tion of biomass materials. 展开更多
关键词 biomass honeycomb porous heterojunction structure interfacial polarization electromagnetic wave absorption
在线阅读 下载PDF
Electromagnetic wave absorption and corrosion resistance performance of carbon nanoclusters/Ce-Mn codoped barium ferrite composite materials 被引量:2
7
作者 Bo Li Lin Ma +7 位作者 Sinan Li Jiewu Cui Xiaohui Liang Wei Sun Pengjie Zhang Nan Huang Song Ma Zhidong Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期699-709,共11页
To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration signific... To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration significance and systematic research re-quirements.By utilizing the low-cost and excellent magnetic and stable chemical characteristics of barium ferrite(BaFe_(12)O_(19))and using the high dielectric loss and excellent chemical inertia of nanocarbon clusters,a new type of nanocomposites with carbon nanoclusters en-capsulating BaFe_(12)O_(19)was designed and synthesized by combining an impregnation method and a high-temperature calcination strategy.Furthermore,Ce-Mn ions were introduced into the BaFe_(12)O_(19)lattice to improve the dielectric and magnetic properties of BaFe_(12)O_(19)cores significantly,and the energy band structure of the doped lattice and the orders of Ce replacing Fe sites were calculated.Benefiting from Ce-Mn ion doping and carbon nanocluster encapsulation,the composite material exhibited excellent dual functionality of corrosion resist-ance and EWA.When BaCe_(0.2)Mn_(0.3)Fe_(11.5)O_(19)-C(BCM-C)was calcined at 600°C,the minimum reflection loss of-20.1 dB was achieved at 14.43 GHz.The Ku band’s effective absorption bandwidth of 4.25 GHz was achieved at an absorber thickness of only 1.3 mm.The BCM-C/polydimethylsiloxane coating had excellent corrosion resistance in the simulated marine environment(3.5wt%NaCl solution).The|Z|0.01Hz value of BCM-C remained at 106Ω·cm^(2)after 12 soaking days.The successful preparation of the BaFe_(12)O_(19)composite en-capsulated with carbon nanoclusters provides new insights into the preparation of multifunctional absorbent materials and the fabrication of absorbent devices applied in humid marine environments in the future. 展开更多
关键词 electromagnetic wave absorption ANTICORROSION barium ferrite cerium and manganese doping carbon nanoclusters
在线阅读 下载PDF
Micro-sized hexapod-like CuS/Cu_(9)S_(5) hybrid with broadband electromagnetic wave absorption 被引量:2
8
作者 Mengjun Han Di Lan +5 位作者 Zhiming Zhang Yizhi Zhao Jiaxiao Zou Zhenguo Gao Guanglei Wu Zirui Jia 《Journal of Materials Science & Technology》 2025年第11期302-312,共11页
Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesi... Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides. 展开更多
关键词 Heterogeneous interface Hexapod shape Transition metal sulfide electromagnetic wave absorption
原文传递
Absorption-Reflection-Transmission Power Coefficient Guiding Gradient Distribution of Magnetic MXene in Layered Composites for Electromagnetic Wave Absorption 被引量:2
9
作者 Yang Zhou Wen Zhang +7 位作者 Dong Pan Zhaoyang Li Bing Zhou Ming Huang Liwei Mi Chuntai Liu Yuezhan Feng Changyu Shen 《Nano-Micro Letters》 2025年第6期466-481,共16页
The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electrom... The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials. 展开更多
关键词 Magnetic MXene Layered and gradient structure Power coefficient electromagnetic wave absorption
在线阅读 下载PDF
Review of recent advances in ferrite-based materials:From synthesis techniques to electromagnetic wave absorption performance 被引量:1
10
作者 Xingliang Chen Di Lan +5 位作者 Luoting Zhou Hailing Liu Xiyu Song Shouyu Wang Zhuanyong Zou Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期591-608,共18页
With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance elec... With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance electromagnetic wave(EMW)ab-sorbers is an effective method to solve the above issue and has attracted the attention of many researchers.As a typical magnetic material,ferrite plays an important role in the design of high-performance EMW absorbers,and related research focuses on diversified synthesis methods,strong absorption performance,and refined microstructure development.Herein,we focus on the synthesis of ferrites and their composites and introduce recent advances in the high-temperature solid-phase method,sol-gel method,chemical coprecipitation method,and solvent thermal method in the preparation of high-performance EMW absorbers.This review aims to help researchers understand the advantages and disadvantages of ferrite-based EMW absorbers fabricated through these methods.It also provides important guidance and reference for researchers to design high-performance EMW absorption materials based on ferrite. 展开更多
关键词 FERRITE electromagnetic wave absorber sol-gel method magnetic material solvent thermal method
在线阅读 下载PDF
Highly electrically conductive MOF/conducting polymer nanocomposites toward tunable electromagnetic wave absorption 被引量:1
11
作者 Xin Wu Peiyuan Kang +5 位作者 Yinghan Zhang Haocheng Guo Shuoying Yang Qi Zheng Lianjun Wang Wan Jiang 《Journal of Materials Science & Technology》 2025年第2期258-269,共12页
Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of h... Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of high-temperature treatments has introduced uncertainties regarding the compositions and microstructures of resulting derivatives.Additionally,complete carbonization has led to diminished yields of the produced carbon composites,significantly limiting their practical applications.Consequently,the exploration of pristine MOF-based EMW absorbers presents an intriguing yet challenging endeavor,primarily due to inherently low electrical conductivity.In this study,we showcase the utilization of structurally robust Zr-MOFs as scaffolds to build highly conductive Zr-MOF/PPy composites via an inner-outer dual-modification approach,which involves the production of conducting polypyrrole(PPy)both within the confined nanoporous channels and the external surface of Zr-MOFs via post-synthetic modification.The interconnection of confined PPy and surface-lined PPy together leads to a consecutive and extensive conducting network to the maximum extent.This therefore entails outstanding conductivity up to~14.3 S cm^(-1) in Zr-MOF/PPy composites,which is approximately 1-2 orders of magnitude higher than that for conductive MOF nanocomposites constructed from either inner or outer modification.Benefiting from the strong and tunable conduction loss,as well as the induced dielectric polarization originated from the porous structures and MOF-polymer interfaces,Zr-MOF/PPy exhibits excellent microwave attenuation capabilities and a tunable absorption frequency range.Specifically,with only 15 wt.%loading,the minimum reflection loss(RLmin)can reach up to-67.4 dB,accompanied by an effective absorption bandwidth(EAB)extending to 6.74 GHz.Furthermore,the microwave absorption characteristics can be tailored from the C-band to the Ku-band by adjusting the loading of PPy.This work provides valuable insights into the fabrication of conductive MOF composites by presenting a straightforward pathway to enhance and reg-ulate electrical conduction in MOF-based nanocomposites,thus paving a way to facilely fabricate pristine MOF-based microwave absorbers. 展开更多
关键词 Conductive mof nanocomposites electromagnetic wave absorption MOF/conducting polymer Electrical conductivity Zr-MOF/PPy
原文传递
La-substituted W-type barium-nickel ferrites for tunable and high-performance electromagnetic wave absorption 被引量:1
12
作者 Long Wang Jiurong Liu +7 位作者 Shenghui Xie Yanli Deng Zhou Wang Shanyue Hou Shengying Yue Gang Wang Na Wu Zhihui Zeng 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期645-656,共12页
W-type barium-nickel ferrite(BaNi_(2)Fe_(16)O_(27))is a highly promising material for electromagnetic wave(EMW)absorption be-cause of its magnetic loss capability for EMW,low cost,large-scale production potential,high... W-type barium-nickel ferrite(BaNi_(2)Fe_(16)O_(27))is a highly promising material for electromagnetic wave(EMW)absorption be-cause of its magnetic loss capability for EMW,low cost,large-scale production potential,high-temperature resistance,and excellent chemical stability.However,the poor dielectric loss of magnetic ferrites hampers their utilization,hindering enhancement in their EMW-absorption performance.Developing efficient strategies that improve the EMW-absorption performance of ferrite is highly desired but re-mains challenging.Here,an efficient strategy substituting Ba^(2+)with rare earth La^(3+)in W-type ferrite was proposed for the preparation of novel La-substituted ferrites(Ba_(1-x)LaxNi_(2)Fe_(15.4)O_(27)).The influences of La^(3+)substitution on ferrites’EMW-absorption performance and the dissipative mechanism toward EMW were systematically explored and discussed.La^(3+)efficiently induced lattice defects,enhanced defect-induced polarization,and slightly reduced the ferrites’bandgap,enhancing the dielectric properties of the ferrites.La^(3+)also enhanced the ferromagnetic resonance loss and strengthened magnetic properties.These effects considerably improved the EMW-absorption perform-ance of Ba_(1-x)LaxNi_(2)Fe_(15.4)O_(27)compared with pure W-type ferrites.When x=0.2,the best EMW-absorption performance was achieved with a minimum reflection loss of-55.6 dB and effective absorption bandwidth(EAB)of 3.44 GHz. 展开更多
关键词 electromagnetic wave absorption W-type barium ferrite rare earth dielectric
在线阅读 下载PDF
Absorption frequency band switchable intelligent electromagnetic wave absorbing carbon composite by cobalt confined catalysis 被引量:1
13
作者 Luo Kong Haodong Cui +3 位作者 Shuyu Zhang Guiqin Zhang Jun Yang Xiaomeng Fan 《Journal of Materials Science & Technology》 2025年第8期203-211,共9页
The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enh... The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enhancing absorption properties.In this work,a porous elastic Co@CNF-PDMS composite was prepared by freeze-drying and confined catalysis.The graphitization degree and conductivity loss of carbon nanofibers(CNFs)were regulated by heat treatment temperature and Co catalyst content.The construction of a heterointerface between Co and C enhances the interfacial polarization loss.The Co@CNF-PDMS composite with 4.5 mm achieves the minimum reflection loss(RLmin)of-81.0 dB at 9.9 GHz and RL no higher than-12.1 dB in the whole of the X-band.After applying a load of up to 40% strain and 100 cycles to Co@CNF-PDMS,the dielectric properties of the composite remain stable.With the increase of compression strain,the distribution density of the absorbent increases,and the CNF sheet layer extrusion contact forms a conductive path,which leads to the conductive loss increase,finally,the absorption band moves to a high frequency.The absorption band can be bi-directionally regulated by loading and strain with good stability,which provides a new strategy for the development of intelligent electromagnetic wave absorbing materials. 展开更多
关键词 Carbon nanofiber Confined catalysis electromagnetic wave absorbing material
原文传递
Integration of Electrical Properties and Polarization Loss Modulation on Atomic Fe–N‑RGO for Boosting Electromagnetic Wave Absorption
14
作者 Kaili Zhang Yuefeng Yan +4 位作者 Zhen Wang Guansheng Ma Dechang Jia Xiaoxiao Huang Yu Zhou 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期517-532,共16页
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ... Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism. 展开更多
关键词 electromagnetic wave absorption Fe-N-RGO Dipole polarization Conduction loss Impedance matching
在线阅读 下载PDF
Construction of 1D Mn_(x)O_(y)/C@Fe_(3)O_(4) Heterostructure for Ultralight Broadband Electromagnetic Wave Absorption
15
作者 SONG Zhiming LIU Bin +2 位作者 YI Peng HAN Xuhui LIU Xiaofang 《陶瓷学报》 北大核心 2025年第4期729-741,共13页
[Background and purposes]In recent years,there has been growing attention in academia and industry on the development of high-performance electromagnetic wave(EMW)absorbing materials.However,creating lightweight broad... [Background and purposes]In recent years,there has been growing attention in academia and industry on the development of high-performance electromagnetic wave(EMW)absorbing materials.However,creating lightweight broadband absorbers remains a challenge in terms of practical applications.EMW absorbing materials primarily rely on the magnetic loss of magnetic materials and/or the dielectric loss of dielectric materials to convert EMW energy into thermal energy for dissipation.Among various magnetic materials,Fe_(3)O_(4) plays an irreplaceable role in EMW absorption due to its high saturation magnetization,low cost and compatible dielectric loss in the gigahertz frequency range.Nevertheless,the high density,large matching thickness and narrow absorption bandwidth of Fe_(3)O_(4) pose significant challenges for practical applications.In contrast,one-dimensional(1D)structures not only retain the characteristic properties of lightweight,chemical stability and high dielectric loss,but also exhibit anisotropic structures and large aspect ratios.Additionally,researchers have found that the minimum reflection loss(RL)of hollow carbon materials with mesopores is nearly four times that of non-porous hollow carbon materials and nine times that of dense carbon materials.According to Maxwell's EMW theory,composites consisting of Fe_(3)O_(4) and one-dimensional(1D)mesoporous carbon materials can leverage their respective advantages by optimizing the composition and structure of the composites to balance u,and Er,thereby enhancing EMW absorption performance.Additionally,numerous studies have demonstrated that composites composed of multi-component heterostructures significantly enhance the EAB.This enhancement is primarily ascribed to the numerous interface polarization losses generated by the additional heterostructure interfaces,which also improve the overall impedance matching of the composites.In this study,we leverage the advantages of magnetic/carbon composites,one-dimensional(1D)mesoporous carbon and multi-component heterostructures to prepare a composite of 1D mesoporous carbon-coated manganese oxide(Mn_(3)O_(4) and MnO,denoted as Mn_(x)O_(y))embedded with Fe_(3)0_(4) nanoparticles(Mn_(x)O_(y)/C@Fe_(3)O_(4)).This composite was synthesized and its formation mechanism and microstructure were analyzed in detail.At the same time,the influence of this Mn_(x)O_(y)/C@Fe_(3)O_(4) structure on EMW properties and absorbing performance was further discussed.[Methods]Firstly,MnO_(2) nanowires were synthesized by using a simple hydrothermal method.Then,the MnO_(2) nanowires served as templates for the synthesis of MnO_(2)/PDA@Fe^(3+)composites through the in-situ polymerization of dopamine and Fe^(3+)adsorption.Finally,1D mesoporous carbon-coated manganese oxide composite embedded with Fe_(3)O_(4) nanoparticles(Mn_(x)O_(y)/C@Fe_(3)O_(4))composites were obtained after heat treatment at 550℃ in N_(2).The crystal structure of the samples was analyzed using X-ray diffractometer with Cu Ka irradiation.Scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(TEM)were used to observe microstructure and morphology of the samples.Nitrogen sorption measurements were obtained at 77 K on a Quantachrome surface area and pore size analyzer to measure the specific surface area and pore size distribution.XPS analysis was performed on X-ray photoelectron spectrometer with monochromatic Al Ka radiation.Magnetization curves of the samples were recorded with a Quantum Design physical property measurement system(PPMS-9)at room temperature.The electromagnetic parameters of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composites were measured using an Agilent N5230C network analyzer in the frequency range of 2-18 GHz.For electromagentic testing,the Mn,Oy/C@Fe34 composites and paraffin wax were mixed at 50°C according to the mass ratio of 15 wt.%,20 wt.%and 25 wt.%,and pressed in a special mold to make coaxial rings(inner diameter=3.04 mm,outer diameter-7 mm),which were denoted as S-1,S-2 and S-3,respectively.[Results]SEM images illustrate the preparation process of iD mesoporous carbon-coated manganese oxide embedded with Fe3O4 nanoparticles composites(Mn_(x)O_(y)/C@Fe_(3)O_(4)).Most of the manganese oxide(Mn,Oy)was reduced to granular after heat treatment,while the outer carbon layer remains its 1D morphology and the carbon layer is interspersed with Fe_(3)O_(4) nanoparticles.The diffraction peaks of MnO_(2) nanowires align well with the body-centered tetragonal a-MnO2.For the Mn_(x)O_(y)/C@Fe_(3)O_(4) composites,the signals of α-MnO_(2) disappears,followed by the emergence of Mn_(3)O_(4) and three prominent diffraction peaks for the cubic MnO.In addition,four weak diffraction peaks correspond to the magnetite Fe_(3)O_(4),consistent with the HRTEM results.The corresponding nitrogen adsorption-desorption isotherm and pore size distribution curve are presented to further analyze the mesoporous structure of composite.The surface composition and element valence states of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composite were investigated by using XPS.The polarization relaxation processes were analyzed according to the Debye theory which describes the relationship between e'and e".Besides the polarization loss,the contribution of the conduction loss plays an important role for the overall dielectric loss.The magnetization curve of Mn_(x)O_(y)/C@Fe_(3)O_(4) exhibits typical ferromagnetic behavior.The permittivity parameter(Co),defined as Co=u"(u)^(-2)f^(-1) determine the contribution of eddy current effect to magnetic loss.The tand values are all larger than those of tand,for the three samples,indicating that the loss capacity of Mn_(x)O_(y)/C@Fe_(3)O_(4) composites is mainly derived from the dielectric loss.Although tand,is smaller,it plays an important role in improving the impedance matching of Mn_(x)O_(y)/C@Fe_(3)O_(4) composites.When the filler loading is 15 wt.%,the RL of sample S-1 is about-10.0 dB at the thickness of 1.5 mm with narrow EAB.As the filler loading increased to 20 wt.%,the RL of sample S-2 reached-62.0 dB at a thickness of 2.2 mm and the EAB was 6.4 GHz at a small thickness of 1.7 mm.When the filler loading is further increased to 25 wt.%,the microwave absorption performance of sample S3 decreased significantly with a little region of RL<-10.0 dB at the thickness of 5.0 mm.The values of[Zin/Zol of the three samples at thicknesses of 1.5-5.0 mm were calculated.Due to good impedance matching of S-2,the incident EMW can enter the material and then can be dissipated through dipole polarization loss,interface polarization loss,conduction loss,eddy current loss and natural ferromagnetic resonance loss.[Conclusions]1D Mn_(x)O_(y)/C@Fe_(3)O_(4) was synthesized via a process involving the coating of polydopamine,adsorption of Fe(ll)salts and heat treatment,using MnO_(2) nanowires as templates.The multi-component heterostructure of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composite(Mn_(3)O_(4),MnO,Fe_(3)O_(4),and C)enhances the interfacial interactions between the different phases,providing increased interface polarization loss under the action of an alternating electromagnetic field.The numerous defects and terminal groups in the mesoporous carbon provide abundant dipole polarization centers.Additionally,the presence of mesopores reduces the weight of the material while increasing the multiple scattering losses of the electromagnetic waves within the material.The ID carbon structure in the matrix forms a conductive network between adjacent fibers,facilitating electron migration and transition,thereby enhancing conductive loss.The incorporation of magnetic Fe_(3)O_(4) nanoparticles introduces eddy current loss and natural ferromagnetic resonance loss,thus increasing magnetic loss.Moreover,the synergistic effect between dielectric and magnetic losses improves the impedance matching of the material,leading to excellent EMW absorption performance. 展开更多
关键词 electromagnetic wave absorbing materials impedance matching ultralight BROADBAND
在线阅读 下载PDF
Correction:Initiating Binary Metal Oxides Microcubes Electromagnetic Wave Absorber Toward Ultrabroad Absorption Bandwidth Through Interfacial and Defects Modulation
16
作者 Fushan Li Nannan Wu +8 位作者 Hideo Kimura Yuan Wang Ben Bin Xu Ding Wang Yifan Li Hassan Algadi Zhanhu Guo Wei Du Chuanxin Hou 《Nano-Micro Letters》 2025年第11期530-533,共4页
Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,... Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction. 展开更多
关键词 binary metal oxides ultrabroad absorption bandwidth electromagnetic wave absorber interfacial modulation defects modulation XRD microcubes
在线阅读 下载PDF
Interfacial electron rearrangement of 3D Fe_(3)O_(4)/h-YFeO_(3)composites for efficient electromagnetic wave absorption
17
作者 Yi Sui Yingde Zhang +4 位作者 Guang Liu Lei Ji Junyu Yue Chen Wu Mi Yan 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期609-618,共10页
Interface modulation is an important pathway for highly efficient electromagnetic wave absorption.Herein,tailored interfaces between Fe_(3)O_(4)particles and the hexagonal-YFeO_(3)(h-YFeO_(3))framework were constructe... Interface modulation is an important pathway for highly efficient electromagnetic wave absorption.Herein,tailored interfaces between Fe_(3)O_(4)particles and the hexagonal-YFeO_(3)(h-YFeO_(3))framework were constructed via facile self-assembly.The resulting interfa-cial electron rearrangement at the heterojunction led to enhanced dielectric and magnetic loss synergy.Experimental results and density function theory(DFT)simulations demonstrate a transition in electrical properties from a half-metallic monophase to metallic Fe_(3)O_(4)/h-YFeO_(3)composites,emphasizing the advantages of the formed heterointerface.The transformation of electron behavior is also accompan-ied by a redistribution of electrons at the Fe_(3)O_(4)/h-YFeO_(3)heterojunction,leading to the accumulation of localized electrons around the Y-O-Fe band bridge,consequently enhancing the polarization.A minimum reflection loss of-34.0 dB can be achieved at 12.0 GHz and 2.0 mm thickness with an effective bandwidth of 3.3 GHz due to the abundant interfaces,enhanced polarization,and rational impedance.Thus,the synergistic effects endow the Fe_(3)O_(4)/h-YFeO_(3)composites with high performance and tunable functional properties for efficient electromagnetic absorption. 展开更多
关键词 SELF-ASSEMBLING HETEROJUNCTION electron rearrangement interface modulation electromagnetic wave absorption
在线阅读 下载PDF
Facile manufacturing of carbon nanotub e/ZIF-67-derive d cobalt composite aerogel with high-efficiency electromagnetic wave absorption
18
作者 Chang Liu Na Wu +4 位作者 Bin Li Zhou Wang Lili Wu Zhihui Zeng Jiurong Liu 《Journal of Materials Science & Technology》 2025年第17期129-139,共11页
Developing high-efficiency electromagnetic wave(EMW)absorbers by designing dielectric/magnetic components and microstructure in a straightforward,scalable method is highly desirable yet challenging.Here,we introduce a... Developing high-efficiency electromagnetic wave(EMW)absorbers by designing dielectric/magnetic components and microstructure in a straightforward,scalable method is highly desirable yet challenging.Here,we introduce a novel hierarchical composite aerogel-based EMW absorber composed of conductive carbon nanotubes(CNTs)and magnetic metal-organic framework(MOF)derivatives,integrated with sustainable cellulose nanofibers(CNF)derived carbon.This composite was prepared using a scalable freeze-casting followed by carbonization approach.Freeze casting enabled the creation of porous monoliths with high specific surface areas and customizable pore sizes and porosities,crucial for enhancing EMW reflection and scattering.Carbonization enhanced composite conductivity and stabilized the cobalt(Co)/carbon nanoparticles derived from ZIF-67 within the carbon matrix.CNF-derived carbon facilitated the efficient integration of ZIF-derived Co nanoparticles and CNTs,resulting in a robust 3D aerogel structure.The synergistic effects of CNT conductive paths and Co nanoparticles’magnetic losses provided an efficient route to enhance EMW absorption.Moreover,the creation of numerous heterogeneous interfaces augmented polarization losses,significantly enhancing EMW loss capability.Remarkably,the composite achieved outstanding EMW absorption,with a minimum reflection loss of-71.03 dB at a filling ratio of merely 10 wt.%and an effective absorption bandwidth of 4.64 GHz,comparable to leading EMW absorbers reported to date. 展开更多
关键词 AEROGEL Carbon nanotubes Impedance matching ZIF-67 electromagnetic wave absorption
原文传递
Rare earth oxides CeO_(2)nanoparticle emb e dde d magnetic carbon nanofibers for electro-magnetic cooperation and efficient electromagnetic wave absorption
19
作者 Baoding Li Yanli Deng +6 位作者 Chang Liu Jing Qiao Shanyue Hou Na Wu Fan Wu Zhihui Zeng Jiurong Liu 《Journal of Materials Science & Technology》 2025年第14期1-8,共8页
Multicomponent composites are considered conducive to electromagnetic wave(EMW)absorption,as multiple loss synergistic effect from each component,enhance the attenuation ability of EMW and optimize impedance matching.... Multicomponent composites are considered conducive to electromagnetic wave(EMW)absorption,as multiple loss synergistic effect from each component,enhance the attenuation ability of EMW and optimize impedance matching.In this study,carbon material was modified by both semi-conductive and magnetic matters to improve their absorbing performance.The carbon-based fibrous composites of CeO_(2)and Co were prepared by electrospinning and subsequent carbonization.At a filling rate of 35 wt.%,the CeCoC nanocomposite fibers exhibit a minimum RL value of−61.4 dB at 2.2 mm,and an effective absorption bandwidth(EAB)of up to 7.6 GHz.The excellent absorbing performance is derived from the improved dielectric loss and optimized impedance matching.The introduction of rare earth oxide CeO_(2)not only helps to maintain the fibrous structure,but also promotes conduction loss.Especially,oxygen vacancy defects introduced by CeO_(2)greatly improved the dielectric loss capacity.The introduction of Co particles optimizes the impedance matching to reduce the matching thickness and strengthen magnetic loss.This study demonstrates the potential of rare earth oxides in improving EMW absorption performance,and opens up new opportunities for the development of advanced materials for high-performance EMW absorption applications. 展开更多
关键词 ELECTROSPINNING Nanocomposite fiber electromagnetic wave absorption Cerium dioxide Metallic cobalt
原文传递
Strain-enhanced liquid-metal-coated carbonyl-iron-powder-embedded polydi-methylsiloxane composites for effective electromagnetic wave absorption
20
作者 Haeji Kim Philippe Tassin +1 位作者 Zungsun Choi Byungil Hwang 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1730-1738,共9页
The advancement of wireless technologies has increased the global demand for ubiquitous connectivity.However,this surge has increased electromagnetic pollution.This study introduces a composite comprising a polymer ma... The advancement of wireless technologies has increased the global demand for ubiquitous connectivity.However,this surge has increased electromagnetic pollution.This study introduces a composite comprising a polymer matrix(polydimethylsiloxane,PDMS)and a magnetic filler(carbonyl iron powder,CIP)to effectively absorb electromagnetic waves(EMW)and suppress electromagnetic noise,while exhibiting good mechanical properties.Eutectic gallium–indium(EGa In)liquid metal(LM)was introduced to improve the insulating properties of magnetic fillers.A core–shell structure was obtained by coating the CIP particles with EGa In,thereby combining magnetic and dielectric materials to enhance EMW absorption.The fluid characteristics of the LM improved the mechanical properties,whereas its electrical conductivity enhanced interfacial polarization loss,thereby augmenting the dielectric loss value of the composites.Moreover,the application of mechanical strain enhanced the EMW absorption of the LM/CIP/PDMS composites due to the formation of a conductive LM network. 展开更多
关键词 electromagnetic wave absorption strain enhancement liquid metal carbonyl iron powder particle core-shell structure dielectric loss
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部