In this paper, an efficient multi-conductor simplification technique is proposed to model the electromagnetic immunity on cable bundles within a braid shielding structure over a large frequency range. By grouping toge...In this paper, an efficient multi-conductor simplification technique is proposed to model the electromagnetic immunity on cable bundles within a braid shielding structure over a large frequency range. By grouping together the conductors based on the knowledge of Z-Smith chart, the required computation time is markedly reduced and the complexity of modeling the completely shielding cable bundles is significantly simplified with a good accuracy. After a brief description of the immunity problems in shielding structure, a six-phase procedure is detailed to generate the geometrical characteristics of the reduced cable bundles. Numerical simulation is carried out by using a commercial software CST to validate the efficiency and advantages of the proposed approach. The research addressed in this paper is considered as a simplified modeling technique for the electromagnetic immunity within a shielding structure.展开更多
One of the key factors for solving the problems of re-entry communication interruption is electromagnetic(EM) wave transmission characteristics in a plasma.Theoretical and experimental studies were carried out on sp...One of the key factors for solving the problems of re-entry communication interruption is electromagnetic(EM) wave transmission characteristics in a plasma.Theoretical and experimental studies were carried out on specific transmission characteristics for different plasma sheath characteristic under thin sheath condition in re-entry state.The paper presents systematic studies on the variations of wave attenuation characteristics versus plasma sheath thickness L,collision frequency ν,electron density n e and wave working frequency f in a φ 800 mm high temperature shock tube.In experiments,L is set to 4 cm and 38 cm.ν is 2 GHz and 15 GHz.n e is from 1×10 10 cm(-3) to 1×10 13 cm(-3),and f is set to 2,5,10,14.6 GHz,respectively.Meanwhile,Wentzel-Kramers-Brillouin(WKB) and finite-difference time-domain(FDTD) methods are adopted to carry out theoretical simulation for comparison with experimental results.It is found that when L is much larger than EM wavelength λ(thick sheath) and ν is large,the theoretical result is in good agreement with experimental one,when sheath thickness L is much larger than λ,while ν is relatively small,two theoretical results are obviously different from the experimental ones.It means that the existing theoretical model can not fully describe the contribution of ν.Furthermore,when L and λ are of the same order of magnitude(thin sheath),the experimental result is much smaller than the theoretical values,which indicates that the current model can not properly describe the thin sheath effect on EM attenuation characteristics.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51675086)the National Defense Pre-Research Foundation of China(Grant No.6140758010116DZ02002)
文摘In this paper, an efficient multi-conductor simplification technique is proposed to model the electromagnetic immunity on cable bundles within a braid shielding structure over a large frequency range. By grouping together the conductors based on the knowledge of Z-Smith chart, the required computation time is markedly reduced and the complexity of modeling the completely shielding cable bundles is significantly simplified with a good accuracy. After a brief description of the immunity problems in shielding structure, a six-phase procedure is detailed to generate the geometrical characteristics of the reduced cable bundles. Numerical simulation is carried out by using a commercial software CST to validate the efficiency and advantages of the proposed approach. The research addressed in this paper is considered as a simplified modeling technique for the electromagnetic immunity within a shielding structure.
文摘One of the key factors for solving the problems of re-entry communication interruption is electromagnetic(EM) wave transmission characteristics in a plasma.Theoretical and experimental studies were carried out on specific transmission characteristics for different plasma sheath characteristic under thin sheath condition in re-entry state.The paper presents systematic studies on the variations of wave attenuation characteristics versus plasma sheath thickness L,collision frequency ν,electron density n e and wave working frequency f in a φ 800 mm high temperature shock tube.In experiments,L is set to 4 cm and 38 cm.ν is 2 GHz and 15 GHz.n e is from 1×10 10 cm(-3) to 1×10 13 cm(-3),and f is set to 2,5,10,14.6 GHz,respectively.Meanwhile,Wentzel-Kramers-Brillouin(WKB) and finite-difference time-domain(FDTD) methods are adopted to carry out theoretical simulation for comparison with experimental results.It is found that when L is much larger than EM wavelength λ(thick sheath) and ν is large,the theoretical result is in good agreement with experimental one,when sheath thickness L is much larger than λ,while ν is relatively small,two theoretical results are obviously different from the experimental ones.It means that the existing theoretical model can not fully describe the contribution of ν.Furthermore,when L and λ are of the same order of magnitude(thin sheath),the experimental result is much smaller than the theoretical values,which indicates that the current model can not properly describe the thin sheath effect on EM attenuation characteristics.