期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Composite electrolytes and interface designs for progressive solid-state sodium batteries 被引量:1
1
作者 Junyu Hou Tianke Zhu +6 位作者 Gang Wang Rongrong Cheacharoen Wu Sun Xingyu Lei Qunyao Yuan Dalin Sun Jie Zhao 《Carbon Energy》 CSCD 2024年第10期301-338,共38页
Solid-state sodium batteries(SSSBs)are poised to replace lithium-ion batteries as viable alternatives for energy storage systems owing to their high safety and reliability,abundance of raw material,and low costs.Howev... Solid-state sodium batteries(SSSBs)are poised to replace lithium-ion batteries as viable alternatives for energy storage systems owing to their high safety and reliability,abundance of raw material,and low costs.However,as the core constituent of SSSBs,solid-state electrolytes(SSEs)with low ionic conductivities at room temperature(RT)and unstable interfaces with electrodes hinder the development of SSSBs.Recently,composite SSEs(CSSEs),which inherit the desirable properties of two phases,high RT ionic conductivity,and high interfacial stability,have emerged as viable alternatives;however,their governing mechanism remains unclear.In this review,we summarize the recent research progress of CSSEs,classified into inorganic-inorganic,polymer-polymer,and inorganic-polymer types,and discuss their structure-property relationship in detail.Moreover,the CSSE-electrode interface issues and effective strategies to promote intimate and stable interfaces are summarized.Finally,the trends in the design of CSSEs and CSSE-electrode interfaces are presented,along with the future development prospects of high-performance SSSBs. 展开更多
关键词 composite solid-state electrolytes electrolyte-electrode interface solid-state sodium batteries
在线阅读 下载PDF
Nitrile Electrolyte Strategy for 4.9 V-Class Lithium-Metal Batteries Operating in Flame 被引量:3
2
作者 Hyunseok Moon Sung-Ju Cho +1 位作者 Dae-Eun Yu Sang-Young Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期229-237,共9页
Challenges facing high-voltage/high-capacity cathodes,in addition to the longstanding problems pertinent to lithium(Li)-metal anodes,should be addressed to develop high-energy-density Li-metal batteries.This issue mos... Challenges facing high-voltage/high-capacity cathodes,in addition to the longstanding problems pertinent to lithium(Li)-metal anodes,should be addressed to develop high-energy-density Li-metal batteries.This issue mostly stems from interfacial instability between electrodes and electrolytes.Conventional carbonate-or ether-based liquid electrolytes suffer from not only volatility and flammability but also limited electrochemical stability window.Here,we report a nitrile electrolyte strategy based on concentrated nitrile electrolytes(CNEs)with co-additives.The CNE consists of high-concentration lithium bis(fluorosulfonyl)imide(LiFSI)in a solvent mixture of succinonitrile(SN)/acetonitrile(AN).The SN/AN solvent mixture is designed to ensure high oxidation stability along with thermal stability,which are prerequisites for high-voltage Li-metal cells.The CNE exhibits interfacial stability with Li metals due to the coordinated solvation structure.Lithium nitrate(LiNO_(3))and indium fluoride(InF_(3))are incorporated in the CNE as synergistic co-additives to further stabilize solid-electrolyte interphase(SEI)on Li metals.The resulting electrolyte(CNE+LiNO_(3)/InF_(3))enables stable cycling performance in Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)and 4.9 V-class Li||LiNi_(0.5)Mn_(1.5)O_(4)cells.Notably,the Li||LiNi_(0.5)Mn_(1.5)O_(4)cell maintains its electrochemical activity at high temperature(100℃)and even in flame without fire or explosion. 展开更多
关键词 4.9 V-class cathodes electrolyte-electrode interfaces lithium-metal batteries nitrile electrolytes safety
在线阅读 下载PDF
Seamless Stitching of Redox Windows to Enable High-Voltage Resilient Solid Sodium Ion Batteries
3
作者 Xiangdan Zhang Yuanyuan Huang +8 位作者 Xiaoyi Hu Ruxin Guo Yongshang Zhang Zhiheng Wu Guoqin Cao Yuran Yu Zhuo Wang Yonglong Shen Guosheng Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期445-454,共10页
While sulfide solid electrolytes such as Na_(11)Sn_(2)PS_(12)can allow fast transport of Na+ions,their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible t... While sulfide solid electrolytes such as Na_(11)Sn_(2)PS_(12)can allow fast transport of Na+ions,their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high-voltage cathodes and sodium metal anode.In this work,we devise an effective approach toward realizing solid sodium ion batteries,using the Na_(11)Sn_(2)PS_(12)electrolyte and slurry-coated NASICON-type Na_(3)MnTi(PO_(4))_(3)@C as high-voltage cathode,highly beneficial for low processing cost and high content/loading of active cathode matter.We report that through significantly improved integrity of electrolyte-cathode interface,such solid sodium ion batteries can deliver outstanding cycling and rate performance,with a charge voltage resilience up to 4.1 V,a high cathode discharge capacity of 128.7 mAh g^(-1)against the Na_(3)MnTi(PO_(4))_(3)@C in cathode is achieved at 0.05 C,and capacity retention ratio of 82%with a rate of 0.1 C is realized after prolonged cycling at room temperature.Besides,we demonstrate that such a solid sodium ion battery can even perform at a sub-zero Celsius temperature of-10℃,when the conventional control cell using liquid electrolyte completely fail to function.This work is to offer a dependable avenue in engineering next generation of safe solid ion batteries based on highly sustainable and much cheaper material resources. 展开更多
关键词 C-coated NASICON nanocrystals electrolyte-electrode interface full-cathode capacity Na_(11)Sn_(2)PS_(12) solid sodium-ion battery
在线阅读 下载PDF
Polymer electrolytes for flexible zinc-air batteries:Recent progress and future directions
4
作者 Jing Wu Wen-Ya Wu +8 位作者 Suxi Wang Dan Kai Enyi Ye Warintorn Thitsartarn Janet Beng Hoon Tan Jianwei Xu Qingyu Yan Qiang Zhu Xian Jun Loh 《Nano Research》 SCIE EI CSCD 2024年第7期6058-6079,共22页
This review article delves into the development of electrolytes for flexible zinc-air batteries(FZABs),a critical component driving the advancement of flexible electronics.We started by surveying the current advanceme... This review article delves into the development of electrolytes for flexible zinc-air batteries(FZABs),a critical component driving the advancement of flexible electronics.We started by surveying the current advancements in electrolyte technologies,including solid-state and gel-based types,and their contributions to enhance the flexibility,efficiency,and durability of FZABs.Secondly,we explored the challenges in this domain,focusing on maintaining electrolyte stability under mechanical stress,ensuring compatibility with flexible substrates,optimizing ion conductivity,and under harsh environmental conditions.Furthermore,the key issues regarding interface details between electrolyte and the electrodes are covered as well.We then discussed the future of electrolyte development in FZABs,highlighting potential avenues such as materials development,sustainability,in-situ studies,and battery integration.This review offers an in-depth overview of the advancements,challenges,and potential breakthroughs in creating electrolytes for FZABs over the past five years.It serves as a guide for both researchers and industry professionals in this dynamic area. 展开更多
关键词 flexible zinc-air batteries ELECTROLYTE polymer HYDROGEL electrolyte-electrode interface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部