The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for...The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.展开更多
This work investigates the transient performance and stability of CO_(2)/H_(2)O co-electrolysis in an air-free environment using a flat-tube solid oxide electrolysis cell(SOEC)stack.The results showed that the transie...This work investigates the transient performance and stability of CO_(2)/H_(2)O co-electrolysis in an air-free environment using a flat-tube solid oxide electrolysis cell(SOEC)stack.The results showed that the transient behavior of the stack with and without blowing gas into the air electrode is almost the same.With a current density of 0.67 A·cm^(-2)@750℃,the stack operated for over 200 h under co-electrolysis conditions without air blowing,and the voltage drop rate of the stack was approximately 0.203%/100 hours.Microstructure analysis revealed a significant loss of nickel particles and an apparent for-mation of an insulating phase strontium chromate(SrCrO4)on the surface of the current collection layer of the air electrode,which are identified as key factors contributing to the performance degradation of the stack.This study provides a reference for development of efficient fuel preparation technology based on SOEC stack in airless environments.展开更多
CO_(2)electrolysis using solid oxide electrolysis cells is a promising technology for CO_(2)utilization and conversion,which has attracted more and more attention in recent years because of its extremely high efficien...CO_(2)electrolysis using solid oxide electrolysis cells is a promising technology for CO_(2)utilization and conversion,which has attracted more and more attention in recent years because of its extremely high efficiency.However,traditional Ni-yttria-stabilized zirconia(Ni-YSZ)or Ni-Gd_(0.1)Ce_(0.9)O_(2-δ)(Ni-GDC)metal-ceramic cathode faces many problems such as Ni agglomeration and carbon deposition during long-time operation.Herein,a perovskite oxide La_(0.43-x)Ca_(0.37)Ti_(0.9)Ni_(0.1)O_(3-δ)(LCTN,x=0,0.05,0.1)with nanophase-LaVO_(4)exsolution was investigated as the novel cathode of solid oxide electrolysis cell(SOEC)for efficient CO_(2)electrolysis.The results confirm that the exsolution nanophase on LCTN surface can significantly improve the CO_(2)adsorption and conversion performance.For CO_(2)electrolysis at 1.8 V,an electrolysis current density of 1.24 A/cm2at 800℃can be obtained on SOEC with La_(0.43-x)Ca_(0.37)Ti_(0.9)Ni_(0.1)O_(3-δ)decorated with LaVO_(4)(LCTN-V0.05)cathode.Furthermore,the corresponding cell can maintain stable operation up to 100 h without apparent performance degradation.These results demonstrate that doping-induced second nanophase exsolution is a promising way to design high-performance SOEC cathodes for CO_(2)electrolysis.展开更多
The performance of solid oxide electrolysis cells(SOECs)for CO_(2) electrolysis is significantly impeded by the limited electrochemical activity and insufficient durability of the cathode.This study introduces a novel...The performance of solid oxide electrolysis cells(SOECs)for CO_(2) electrolysis is significantly impeded by the limited electrochemical activity and insufficient durability of the cathode.This study introduces a novel(LaSrPrBaCaGd)_(2)Fe_(1.5)Mo_(0.5)O_(6-δ)(LSPBCGFM)perovskite via A-site entropy engineering,to improve both activity and durability.Experimental results reveal that LSPBCGFM cathode-based SOEC achieves a current density of 1.34 A·cm^(−2) at 1.5 V and 800℃,maintaining stable operation for more than 400 h at 1.2 V with negligible degradation.Theoretical calculations suggest that the high-entropy strategy shifts the transition metal d-band center and O-2p-band center closer to the Fermi energy level simultaneously,thereby initiating more favorable CO_(2) adsorption and activation.In addition,a higher O-2p-band center promotes the formation and diffusion of oxygen vacancies.The findings of this study provide crucial insights into the role of conformational entropy strategies in CO_(2) electrolysis and offer potential pathways for the development of highly efficient and stable catalysts.展开更多
Seawater electrolysis offers a promising pathway to generate green hydrogen,which is crucial for the net-zero emission targets.Indirect seawater electrolysis is severely limited by high energy demands and system compl...Seawater electrolysis offers a promising pathway to generate green hydrogen,which is crucial for the net-zero emission targets.Indirect seawater electrolysis is severely limited by high energy demands and system complexity,while the direct seawater electrolysis bypasses pre-treatment,offering a simpler and more cost-effective solution.However,the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis’s efficiency.Herein,we review recent advances in the rational design of chlorine-suppressive catalysts and integrated electrolysis systems architectures for chloride-induced corrosion,with simultaneous enhancement of Faradaic efficiency and reduction of electrolysis’s cost.Furthermore,promising directions are proposed for durable and efficient seawater electrolysis systems.This review provides perspectives for seawater electrolysis toward sustainable energy conversion and environmental protection.展开更多
The performance of the fuel electrode in a solid oxide electrolysis cell(SOEC)is crucial to facilitating fuel gas electrolysis and is the key determinant of overall electrolysis efficiency.Nevertheless,the commerciali...The performance of the fuel electrode in a solid oxide electrolysis cell(SOEC)is crucial to facilitating fuel gas electrolysis and is the key determinant of overall electrolysis efficiency.Nevertheless,the commercialization of integrated CO_(2)-H_(2)O electrolysis in SOEC remains constrained by suboptimal catalytic efficiency and long-term stability limitations inherent to conventional fuel electrode architec-tures.A novel high-entropy Sr_(2)FeTi_(0.2)Cr_(0.2)Mn_(0.2)Mo_(0.2)Co_(0.2)O_(6−δ)(SFTCMMC)was proposed as a prospective electrode material of co-elec-trolysis in this work.The physicochemical properties and electrochemical performance in the co-electrolysis reaction were investigated.Full cell is capable of electrolyzing H_(2)O and CO_(2)effectively with an applied voltage.The effects of temperature,H_(2)O and CO_(2)concentra-tions,and applied voltage on the electrochemical performance of Sc_(0.18)Zr_(0.82)O_(2−δ)(SSZ)-electrolyte supported SOEC were investigated by varying the operating conditions.The SOEC obtains a favorable electrolysis current density of 1.47 A·cm^(−2)under co-electrolysis condi-tion at 850℃ with 1.5 V.Furthermore,the cell maintains stable performance for 150 h at 1.3 V,and throughout this period,no carbon de-position is detected.The promising findings suggest that the high-entropy SFTCMMC perovskite is a viable fuel electrode candidate for efficient H_(2)O/CO_(2)co-electrolysis.展开更多
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO...Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.展开更多
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car...Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg).展开更多
Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-p...Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-phase method as the cathode for CO_(2)electrolysis by SOECs.XRD confirms that SFMSc exhibits a stable cubic phase crystal structure.The experimental results of TPD,TG,EPR,CO_(2)-TPD further demonstrate that Sc-doping increases the concentration of oxygen vacancy in the material and the chemical adsorption capacity of CO_(2)molecules.Electrochemical tests reveal that SFMSc single cell achieves a current density of 2.26 A/cm^(2) and a lower polarization impedance of 0.32Ω·cm^(2) at 800°C under the applied voltage of 1.8 V.And no significant performance attenuation or carbon deposition is observed after 80 h continuous long-term stability test.This study provides a favorable support for the development of SOEC cathode materials with good electro-catalytic performance and stability.展开更多
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten...Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.展开更多
Upgrading carbon dioxide(CO_(2))into value-added bulk chemicals offers a dual-benefit strategy for the carbon neutrality and circular carbon economy.Herein,we develop an integrated CO_(2) valorization strategy that sy...Upgrading carbon dioxide(CO_(2))into value-added bulk chemicals offers a dual-benefit strategy for the carbon neutrality and circular carbon economy.Herein,we develop an integrated CO_(2) valorization strategy that synergizes CO_(2)-H_(2)O co-electrolysis(producing CO/O_(2) feeds)with oxidative double carbonylation of ethylene/acetylene to synthesize CO_(2)-derived C_(4) diesters(dimethyl succinate,fumarate,and maleate).A group of versatile building blocks for manufacturing plasticizers,biodegradable polymers,and pharmaceutical intermediates.Remarkably,CO_(2) exhibits dual functionality:serving simultaneously as a CO/O_(2) source and an explosion suppressant during the oxidative carbonylation process.We systematically investigated the explosion-suppressing efficacy of CO_(2) in flammable gas mixtures(CO/O_(2),C_(2)H_(4)/CO/O_(2),and C_(2)H_(2)/CO/O_(2))across varying concentrations.Notably,the mixed gas stream from CO_(2)/H_(2)O co-electrolysis at an industrial-scale current densities of 400 mA/cm^(2),enabling direct utilization in oxidative double carbonylation reactions with exceptional compatibility and inherent safety.Extended applications were demonstrated through substrate scope expansion and gram-scale synthesis.This study establishes not only a safe protocol for oxidative carbonylation processes,but also opens an innovative pathway for sustainable CO_(2) valorization,including CO surrogate and explosion suppressant.展开更多
Using abundant saline water for electrolysis,rather than limited freshwater,presents a promising technique for generating clean hydrogen energy.However,high concentration of corrosive chloride ions in saline water pos...Using abundant saline water for electrolysis,rather than limited freshwater,presents a promising technique for generating clean hydrogen energy.However,high concentration of corrosive chloride ions in saline water poses a great challenge in the stability of anode.In this study,we present a straightforward strategy to protect the anode from corrosion by patching the catalyst layer through a treatment of the anode with a sodium sulfide(Na2S) solution followed by electrochemical activation.The rapid sulfurization of the Ni electrode in Na2S results in the formation of a Na2S layer,which can subsequently be converted to NiOOH upon electrochemical activation,thereby shielding the inner Ni electrode from corrosion.The as-prepared electrode (P-NiFe-LDH/Ni) based on the strategy demonstrated stability over 3,500 h at an industrial current density of 0.5 A cm^(-2)in a 0.5 M NaCl and 1 M KOH solution.This study presents an effective strategy to significantly enhance the stability of anodes for saline water electrolysis by effectively patching the cracks in the catalyst layer.展开更多
Traditional pyrometallurgical and hydrometallurgical methods to extract bismuth from sulfide ores face problems such as high cost,low-concentration SO_(2)generation,and long process time.In this study,the cyclone tech...Traditional pyrometallurgical and hydrometallurgical methods to extract bismuth from sulfide ores face problems such as high cost,low-concentration SO_(2)generation,and long process time.In this study,the cyclone technology and slurry electrolysis method were combined.The bismuth sulfide ore was dissolved directly at the anode,while the high purity bismuth was deposited efficiently at the cathode under the advantages of the two methods.The short process and high-efficiency extraction of bismuth sulfide ore were realized,and the pollution of low-concentration SO_(2)was avoided.Then,the effects of several crucial experimental conditions(current density,reaction time,temperature,pH,liquid-solid ratio,and circulation flow rate)on the leaching efficiency and recovery efficiency of bismuth were investigated.The leaching and electrowinning mechanisms during the recovery process were also analyzed according to the research results of this paper to better understand the cyclone slurry electrolysis process.The experimental results showed that 95.19%bismuth was leached into the acid solution in the anode area under optimal conditions,and the recovery efficiency and purity of bismuth on the cathode reached 91.13%and 99.26%,respectively,which were better than those by the traditional hydrometallurgy recovery process.展开更多
The effect of iron concentration on the microstructural and structural properties of ZnO for electrolysis and photodetector applications was investigated.The thin layers of un-doped and doped ZnO with different percen...The effect of iron concentration on the microstructural and structural properties of ZnO for electrolysis and photodetector applications was investigated.The thin layers of un-doped and doped ZnO with different percentages of Fe(2,4,and 6 wt.%)were deposited by spin-coating on glass substrates.Sample characterization was done by X-ray diffraction(XRD),atomic force microscopy(AFM),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),UV−Vis absorption spectra and X-ray photoelectron spectroscopy(XPS).Structural measurements by XRD showed that all the layers were composed of polycrystallines with a hexagonal Wurtzite structure.Two new peaks were also discovered after the doping process belonging to the Fe_(2)O_(4)(400)and(440)crystal phase.Morphological analysis showed that the surface roughness values of ZnO layers ranged between 8 and 45 nm.XPS studies confirmed the presence of Fe in 3+states in ZnO layers.An average transmittance of 90%was measured by UV−Vis in the wavelength range of 200−900 nm.The values of the energy gap(Eg)decreased with an increase in the concentration of Fe.AFM topography results confirmed that ZnO-based thin layers had a relatively uniform surface.The efficiency of these samples has been confirmed for their use in many electrical applications,including photodetectors and electrolysis of contaminated solutions.展开更多
Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocataly...Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocatalyst towards this technology remains challenging.Herein,a metallic cobalt mediated molybdenum nitride heterostructural material has been exploited on nickel foam(Co@Mo_(2)N/NF)for the glycerol oxidation reaction(GOR)and hydrogen evolution reaction(HER).Remarkably,the obtained Co@Mo_(2)N/NF realizes eminent performance with low overpotential of 49 mV at 50 mA/cm^(2)for HER and high Faradaic efficiency of formate of 95.03%at 1.35 V vs.RHE for GOR,respectively.The systematic in-situ experiments reveal that the Co@Mo_(2)N heterostructure promotes the cleavage of C-C bond in glycerol by active CoOOH species and boosts the conversion of glycerol to aldehyde intermediates to formate product.Moreover,the density functional theory(DFT)calculations confirm the strong interaction at Co@Mo_(2)N interface,which contributes to the optimized water dissociation and the transformation of H^(*)to H^(2).Benefiting from those advantages,the built HER||GOR electrolyzer delivers a low voltage of 1.61 V at 50 mA/cm^(2),high Faradaic efficiency,and robust stability over 120 h for sustained and stable electrolysis.展开更多
Proton exchange membrane water electrolysis(PEMWE)is a favorable technology for producing highpurity hydrogen under high current density using intermittent renewable energy.The performance of PEMWE is largely determin...Proton exchange membrane water electrolysis(PEMWE)is a favorable technology for producing highpurity hydrogen under high current density using intermittent renewable energy.The performance of PEMWE is largely determined by the oxygen evolution reaction(OER),a sluggish four-electron reaction with a high reaction barrier.Nowadays,iridium(Ir)-based catalysts are the catalysts of choice for OER due to their excellent activity and durability in acidic solution.However,its high price and unsatisfactory electrochemical performance severely restrict the PEMWE’s practical application.In this review,we initiate by introducing the current OER reaction mechanisms,namely adsorbate evolution mechanism and lattice oxygen mechanism,with degradation mechanisms discussed.Optimized strategies in the preparation of advanced Ir-based catalysts are further introduced,with merits and potential problems also discussed.The parameters that determine the performance of PEMWE are then introduced,with unsolved issues and related outlooks summarized in the end.展开更多
Seawater is the most abundant source of molecular hydrogen.Utilizing the hydrogen reserves present in the seawater may inaugurate innovative strategies aimed at advancing sustainable energy and environmental preservat...Seawater is the most abundant source of molecular hydrogen.Utilizing the hydrogen reserves present in the seawater may inaugurate innovative strategies aimed at advancing sustainable energy and environmental preservation endeavors in the future.Recently,there has been a surge in study in the field addressing the production of hydrogen through the electrochemical seawater splitting.However,the performance and durability of the electrode have limitations due to the fact that there are a few challenges that need to be addressed in order to make the technology suitable for the industrial purpose.The active site blockage caused by chloride ions that are prevalent in seawater and chloride corrosion is the most significant issue;it has a negative impact on both the activity and the durability of the anode component.Addressing this particular issue is of upmost importance in the seawater splitting area.This review concentrates on the newly developed materials and techniques for inhibiting chloride ions by blocking the active sites,simultaneously preventing the chloride corrosion.It is anticipated that the concept will be advantageous for a large audience and will inspire researchers to study on this particular area of concern.展开更多
Spent lead paste(SLP)presents a major recycling challenge in lead-acid battery treatment due to its insoluble lead compounds.This study develops an innovative and environmentally sustainable approach by integrating(NH...Spent lead paste(SLP)presents a major recycling challenge in lead-acid battery treatment due to its insoluble lead compounds.This study develops an innovative and environmentally sustainable approach by integrating(NH_(4))_(2)SO_(4)-NH_(3)·H_(2)O with suspension electrolysis,effectively converting poorly soluble PbSO_(4)into soluble[Pb(NH_(3))_(4)]^(2+)complexes.The electrolytic conversion mechanisms of SLP components are systematically elucidated,revealing four distinct transformation pathways:1)metallic Pb undergoes complete dissolution as[Pb(NH_(3))_(4)]^(2+)complexes followed by cathodic reduction to elemental lead;2)PbO_(2)increases after suspension electrolysis since part of PbO is oxidized;3)PbO demonstrates dual behavior,with 45.74%undergoing anodic oxidation to PbO_(2) while the remainder(54.26%)participates in cathodic electrodeposition;4)PbSO_(4)exhibits triple conversion routes,including:1)32.98%transformation through intermediate(NH_(4))Pb(OH)SO_(4)formation followed by anodic conversion to PbO·PbSO_(4),2)21.36%direct cathodic reduction to metallic lead,and 3)the residual fraction maintaining soluble[Pb(NH_(3))_(4)]^(2+)speciation in the electrolyte.The optimized process achieves exceptional current efficiency(95.49%)and lead recovery(45.67%),with anode residues comprising 67.58%PbO_(2)and 32.42%PbO·PbSO_(4).Remarkably,this process exhibits significant economic and environmental advantages,with recycling 1 kg of SLP through the(NH_(4))_(2)SO_(4)-NH_(3)·H_(2)O suspension electrolysis process resulting in a net profit of 0.3466 USD and a reduction in carbon emissions of 119.758 kg CO_(2)eq.,offering dual advantages of environmental and economic benefits.This work provides fundamental insights into lead phase conversion during suspension electrolysis while presenting a practical,effective solution for battery recycling industries.展开更多
Direct electrolysis of seawater to produce green hydrogen is a more environmentally friendly process than freshwater electrolysis.The renewable energy sector exhibits tremendous interest in practical seawater electrol...Direct electrolysis of seawater to produce green hydrogen is a more environmentally friendly process than freshwater electrolysis.The renewable energy sector exhibits tremendous interest in practical seawater electrolysis techniques due to its substantial capacity to mitigate the need for freshwater consumption.With the low catalytic efficiency of the current seawater splitting process and the poor reliability of its operation,the process suffers from severe corrosion caused by chloride ions,as well as anodic competition between oxygen evolution and chlorine oxidation reactions.This review provides an overview of the latest electrocatalyst developments for promoting selectivity and stability in seawater electrolysis.Using the characterization and simulation results,as well as active machine learning,advanced electrocatalytic materials can be designed and developed,a research direction that will become increasingly important in the future.A variety of strategies are discussed in detail for designing advanced electrocatalysts in seawater electrolysis,including the surface protective layer,structural regulation by heteroatom doping and vacancies,porous structure,core-shell construction,and 3D hetero-structure construction to hinder chlorine evolution reactions.Finally,future perspectives and challenges for green hydrogen production from seawater electrolysis are also described.展开更多
The oxophilicity of metal oxides is usually utilized to improve the ammonia oxidation reaction(AOR)activity of Pt-based catalysts.But the effect of strong interaction between Pt and metal oxides on AOR is not studied....The oxophilicity of metal oxides is usually utilized to improve the ammonia oxidation reaction(AOR)activity of Pt-based catalysts.But the effect of strong interaction between Pt and metal oxides on AOR is not studied.Herein,experimental and density functional theory calculation results indicate that a strong interaction is built between Pt and reducible CeOx by high-temperature reduction,which induces the electronic interaction due to the difference of work fu nction,then optimizing the competitive adsorption behavior of*OH and*NH_(3)based on hard-soft acid-base principle.Accordingly,the optimal sample achieves an AOR peak current density of 329 mA mg_(Pt)^(-1),which is 2.4 times that of Pt.Meanwhile,it also shows satisfied hydrogen evolution reaction activity with an overpotential of only 24.3 mV at-10 mA cm^(-2)due to the optimization of*H adsorption energy on Pt by CeO_(x).Therefore,this work proposes an AOR activity enhancement mechanism of metal oxides in terms of the strong interaction,and sheds light on developing effective bifunctional catalysts for ammonia electrolysis.展开更多
基金National Natural Science Foundation of China(No.52476192,No.52106237)Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)。
文摘The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.
基金co-supported by the National Key R&D Program of China(No.2022YFB4002203)Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(No.LBMHY24B060003)Ningbo Key R&D Project(No.2023Z155).
文摘This work investigates the transient performance and stability of CO_(2)/H_(2)O co-electrolysis in an air-free environment using a flat-tube solid oxide electrolysis cell(SOEC)stack.The results showed that the transient behavior of the stack with and without blowing gas into the air electrode is almost the same.With a current density of 0.67 A·cm^(-2)@750℃,the stack operated for over 200 h under co-electrolysis conditions without air blowing,and the voltage drop rate of the stack was approximately 0.203%/100 hours.Microstructure analysis revealed a significant loss of nickel particles and an apparent for-mation of an insulating phase strontium chromate(SrCrO4)on the surface of the current collection layer of the air electrode,which are identified as key factors contributing to the performance degradation of the stack.This study provides a reference for development of efficient fuel preparation technology based on SOEC stack in airless environments.
基金Project supported by the National Key Research&Development Project(2023YFB4006001)National Natural Science Foundation of China(52172199)。
文摘CO_(2)electrolysis using solid oxide electrolysis cells is a promising technology for CO_(2)utilization and conversion,which has attracted more and more attention in recent years because of its extremely high efficiency.However,traditional Ni-yttria-stabilized zirconia(Ni-YSZ)or Ni-Gd_(0.1)Ce_(0.9)O_(2-δ)(Ni-GDC)metal-ceramic cathode faces many problems such as Ni agglomeration and carbon deposition during long-time operation.Herein,a perovskite oxide La_(0.43-x)Ca_(0.37)Ti_(0.9)Ni_(0.1)O_(3-δ)(LCTN,x=0,0.05,0.1)with nanophase-LaVO_(4)exsolution was investigated as the novel cathode of solid oxide electrolysis cell(SOEC)for efficient CO_(2)electrolysis.The results confirm that the exsolution nanophase on LCTN surface can significantly improve the CO_(2)adsorption and conversion performance.For CO_(2)electrolysis at 1.8 V,an electrolysis current density of 1.24 A/cm2at 800℃can be obtained on SOEC with La_(0.43-x)Ca_(0.37)Ti_(0.9)Ni_(0.1)O_(3-δ)decorated with LaVO_(4)(LCTN-V0.05)cathode.Furthermore,the corresponding cell can maintain stable operation up to 100 h without apparent performance degradation.These results demonstrate that doping-induced second nanophase exsolution is a promising way to design high-performance SOEC cathodes for CO_(2)electrolysis.
基金supported by the National Natural Science Foundation of China(Nos.22379133,22075256,and 52072350)the Natural Science Foundation of Guangdong Province(No.2024A1515012235).
文摘The performance of solid oxide electrolysis cells(SOECs)for CO_(2) electrolysis is significantly impeded by the limited electrochemical activity and insufficient durability of the cathode.This study introduces a novel(LaSrPrBaCaGd)_(2)Fe_(1.5)Mo_(0.5)O_(6-δ)(LSPBCGFM)perovskite via A-site entropy engineering,to improve both activity and durability.Experimental results reveal that LSPBCGFM cathode-based SOEC achieves a current density of 1.34 A·cm^(−2) at 1.5 V and 800℃,maintaining stable operation for more than 400 h at 1.2 V with negligible degradation.Theoretical calculations suggest that the high-entropy strategy shifts the transition metal d-band center and O-2p-band center closer to the Fermi energy level simultaneously,thereby initiating more favorable CO_(2) adsorption and activation.In addition,a higher O-2p-band center promotes the formation and diffusion of oxygen vacancies.The findings of this study provide crucial insights into the role of conformational entropy strategies in CO_(2) electrolysis and offer potential pathways for the development of highly efficient and stable catalysts.
基金supported by the National Natural Science Foundation of China(Nos.22208376,UA22A20429)Shandong Provincial Natural Science Foundation(Nos.ZR2024QB175,ZR2023LFG005)+1 种基金Qingdao New Energy Shandong Laboratory Open Project(QNESL OP 202303)Ministry of Education University-Industry Collaborative Education Program(No.230804132140429).
文摘Seawater electrolysis offers a promising pathway to generate green hydrogen,which is crucial for the net-zero emission targets.Indirect seawater electrolysis is severely limited by high energy demands and system complexity,while the direct seawater electrolysis bypasses pre-treatment,offering a simpler and more cost-effective solution.However,the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis’s efficiency.Herein,we review recent advances in the rational design of chlorine-suppressive catalysts and integrated electrolysis systems architectures for chloride-induced corrosion,with simultaneous enhancement of Faradaic efficiency and reduction of electrolysis’s cost.Furthermore,promising directions are proposed for durable and efficient seawater electrolysis systems.This review provides perspectives for seawater electrolysis toward sustainable energy conversion and environmental protection.
基金supported by the National Natural Science Foundation of China(No.52472270)the Basic Research Program of Jiangsu(No.BK20243049)the Fundamental Research Funds for the Central Universities(No.2023KYJD1010).
文摘The performance of the fuel electrode in a solid oxide electrolysis cell(SOEC)is crucial to facilitating fuel gas electrolysis and is the key determinant of overall electrolysis efficiency.Nevertheless,the commercialization of integrated CO_(2)-H_(2)O electrolysis in SOEC remains constrained by suboptimal catalytic efficiency and long-term stability limitations inherent to conventional fuel electrode architec-tures.A novel high-entropy Sr_(2)FeTi_(0.2)Cr_(0.2)Mn_(0.2)Mo_(0.2)Co_(0.2)O_(6−δ)(SFTCMMC)was proposed as a prospective electrode material of co-elec-trolysis in this work.The physicochemical properties and electrochemical performance in the co-electrolysis reaction were investigated.Full cell is capable of electrolyzing H_(2)O and CO_(2)effectively with an applied voltage.The effects of temperature,H_(2)O and CO_(2)concentra-tions,and applied voltage on the electrochemical performance of Sc_(0.18)Zr_(0.82)O_(2−δ)(SSZ)-electrolyte supported SOEC were investigated by varying the operating conditions.The SOEC obtains a favorable electrolysis current density of 1.47 A·cm^(−2)under co-electrolysis condi-tion at 850℃ with 1.5 V.Furthermore,the cell maintains stable performance for 150 h at 1.3 V,and throughout this period,no carbon de-position is detected.The promising findings suggest that the high-entropy SFTCMMC perovskite is a viable fuel electrode candidate for efficient H_(2)O/CO_(2)co-electrolysis.
基金financial support from the JSPS KAKENHI Grant-in-Aid for Scientific Research(B),No.21H02035KAKENHI Grant-in-Aid for Challenging Research(Exploratory),No.21K19017+2 种基金KAKENHI Grant-in-Aid for Transformative Research Areas(B),No.21H05100National Natural Science Foundation of China,No.22409033 and No.22409035Basic and Applied Basic Research Foundation of Guangdong Province,No.2022A1515110470.
文摘Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.
基金support from the National Natural Science Foundation of China(No’s.U22B2071,51874211,52031008)the Chilwee Group(CWDY-ZH-YJY-202101-001).
文摘Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg).
基金supported by National Key R&D Program of China(2021YFB4001401)National Natural Science Foundation of China(52272190,22178023).
文摘Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-phase method as the cathode for CO_(2)electrolysis by SOECs.XRD confirms that SFMSc exhibits a stable cubic phase crystal structure.The experimental results of TPD,TG,EPR,CO_(2)-TPD further demonstrate that Sc-doping increases the concentration of oxygen vacancy in the material and the chemical adsorption capacity of CO_(2)molecules.Electrochemical tests reveal that SFMSc single cell achieves a current density of 2.26 A/cm^(2) and a lower polarization impedance of 0.32Ω·cm^(2) at 800°C under the applied voltage of 1.8 V.And no significant performance attenuation or carbon deposition is observed after 80 h continuous long-term stability test.This study provides a favorable support for the development of SOEC cathode materials with good electro-catalytic performance and stability.
基金This work was supported by the National Key R&D Program of China(2022YFB4102000 and 2022YFA1505100)the NSFC(22472038)the Shanghai Science and Technology Innovation Action Plan(22dz1205500).
文摘Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.
文摘Upgrading carbon dioxide(CO_(2))into value-added bulk chemicals offers a dual-benefit strategy for the carbon neutrality and circular carbon economy.Herein,we develop an integrated CO_(2) valorization strategy that synergizes CO_(2)-H_(2)O co-electrolysis(producing CO/O_(2) feeds)with oxidative double carbonylation of ethylene/acetylene to synthesize CO_(2)-derived C_(4) diesters(dimethyl succinate,fumarate,and maleate).A group of versatile building blocks for manufacturing plasticizers,biodegradable polymers,and pharmaceutical intermediates.Remarkably,CO_(2) exhibits dual functionality:serving simultaneously as a CO/O_(2) source and an explosion suppressant during the oxidative carbonylation process.We systematically investigated the explosion-suppressing efficacy of CO_(2) in flammable gas mixtures(CO/O_(2),C_(2)H_(4)/CO/O_(2),and C_(2)H_(2)/CO/O_(2))across varying concentrations.Notably,the mixed gas stream from CO_(2)/H_(2)O co-electrolysis at an industrial-scale current densities of 400 mA/cm^(2),enabling direct utilization in oxidative double carbonylation reactions with exceptional compatibility and inherent safety.Extended applications were demonstrated through substrate scope expansion and gram-scale synthesis.This study establishes not only a safe protocol for oxidative carbonylation processes,but also opens an innovative pathway for sustainable CO_(2) valorization,including CO surrogate and explosion suppressant.
基金financially supported by the National Key Research and Development Program(No.2023YFB4006100)the National Natural Science Foundation of China(No.52271232)+3 种基金Ningbo Youth Science and Technology Leading Talents Project(No.2023QL026)the Youth Innovation Promotion Association,CAS(No.2020300)the Natural Science Foundation of Zhejiang Province(Nos.LY21E020008 and LD21E020001)the“From 0 to 1”Innovative Program of CAS(No.ZDBS-LY-JSC021)
文摘Using abundant saline water for electrolysis,rather than limited freshwater,presents a promising technique for generating clean hydrogen energy.However,high concentration of corrosive chloride ions in saline water poses a great challenge in the stability of anode.In this study,we present a straightforward strategy to protect the anode from corrosion by patching the catalyst layer through a treatment of the anode with a sodium sulfide(Na2S) solution followed by electrochemical activation.The rapid sulfurization of the Ni electrode in Na2S results in the formation of a Na2S layer,which can subsequently be converted to NiOOH upon electrochemical activation,thereby shielding the inner Ni electrode from corrosion.The as-prepared electrode (P-NiFe-LDH/Ni) based on the strategy demonstrated stability over 3,500 h at an industrial current density of 0.5 A cm^(-2)in a 0.5 M NaCl and 1 M KOH solution.This study presents an effective strategy to significantly enhance the stability of anodes for saline water electrolysis by effectively patching the cracks in the catalyst layer.
基金Projects(52104355,52074363,52374364)supported by the National Natural Science Foundation of ChinaProject(2023YFC2907904)supported by the National Key R&D Program of China。
文摘Traditional pyrometallurgical and hydrometallurgical methods to extract bismuth from sulfide ores face problems such as high cost,low-concentration SO_(2)generation,and long process time.In this study,the cyclone technology and slurry electrolysis method were combined.The bismuth sulfide ore was dissolved directly at the anode,while the high purity bismuth was deposited efficiently at the cathode under the advantages of the two methods.The short process and high-efficiency extraction of bismuth sulfide ore were realized,and the pollution of low-concentration SO_(2)was avoided.Then,the effects of several crucial experimental conditions(current density,reaction time,temperature,pH,liquid-solid ratio,and circulation flow rate)on the leaching efficiency and recovery efficiency of bismuth were investigated.The leaching and electrowinning mechanisms during the recovery process were also analyzed according to the research results of this paper to better understand the cyclone slurry electrolysis process.The experimental results showed that 95.19%bismuth was leached into the acid solution in the anode area under optimal conditions,and the recovery efficiency and purity of bismuth on the cathode reached 91.13%and 99.26%,respectively,which were better than those by the traditional hydrometallurgy recovery process.
基金the support received from the Researchers Supporting Project(No.RSP2024R404),King Saud University,Riyadh,Saudi Arabia。
文摘The effect of iron concentration on the microstructural and structural properties of ZnO for electrolysis and photodetector applications was investigated.The thin layers of un-doped and doped ZnO with different percentages of Fe(2,4,and 6 wt.%)were deposited by spin-coating on glass substrates.Sample characterization was done by X-ray diffraction(XRD),atomic force microscopy(AFM),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),UV−Vis absorption spectra and X-ray photoelectron spectroscopy(XPS).Structural measurements by XRD showed that all the layers were composed of polycrystallines with a hexagonal Wurtzite structure.Two new peaks were also discovered after the doping process belonging to the Fe_(2)O_(4)(400)and(440)crystal phase.Morphological analysis showed that the surface roughness values of ZnO layers ranged between 8 and 45 nm.XPS studies confirmed the presence of Fe in 3+states in ZnO layers.An average transmittance of 90%was measured by UV−Vis in the wavelength range of 200−900 nm.The values of the energy gap(Eg)decreased with an increase in the concentration of Fe.AFM topography results confirmed that ZnO-based thin layers had a relatively uniform surface.The efficiency of these samples has been confirmed for their use in many electrical applications,including photodetectors and electrolysis of contaminated solutions.
基金financially supported by the National Natural Science Foundation of China(No.22205205)the Natural Science Foundation of Zhejiang Province(No.LQ24E040002)the Science Foundation of Zhejiang Sci-Tech University(ZSTU)(Nos.21062337Y,LW-YP2024076)。
文摘Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocatalyst towards this technology remains challenging.Herein,a metallic cobalt mediated molybdenum nitride heterostructural material has been exploited on nickel foam(Co@Mo_(2)N/NF)for the glycerol oxidation reaction(GOR)and hydrogen evolution reaction(HER).Remarkably,the obtained Co@Mo_(2)N/NF realizes eminent performance with low overpotential of 49 mV at 50 mA/cm^(2)for HER and high Faradaic efficiency of formate of 95.03%at 1.35 V vs.RHE for GOR,respectively.The systematic in-situ experiments reveal that the Co@Mo_(2)N heterostructure promotes the cleavage of C-C bond in glycerol by active CoOOH species and boosts the conversion of glycerol to aldehyde intermediates to formate product.Moreover,the density functional theory(DFT)calculations confirm the strong interaction at Co@Mo_(2)N interface,which contributes to the optimized water dissociation and the transformation of H^(*)to H^(2).Benefiting from those advantages,the built HER||GOR electrolyzer delivers a low voltage of 1.61 V at 50 mA/cm^(2),high Faradaic efficiency,and robust stability over 120 h for sustained and stable electrolysis.
基金supported by the National Key Research and Development Program of China(No.2022YFB4004100)National Natural Science Foundation of China(Nos.U22A20396,22209168)+1 种基金Natural Science Foundation of Anhui Province(No.2208085UD04)Liaoning Binhai Laboratory(No.LBLF-2023-04),and Shandong Energy Institute(No.SEI U202307).
文摘Proton exchange membrane water electrolysis(PEMWE)is a favorable technology for producing highpurity hydrogen under high current density using intermittent renewable energy.The performance of PEMWE is largely determined by the oxygen evolution reaction(OER),a sluggish four-electron reaction with a high reaction barrier.Nowadays,iridium(Ir)-based catalysts are the catalysts of choice for OER due to their excellent activity and durability in acidic solution.However,its high price and unsatisfactory electrochemical performance severely restrict the PEMWE’s practical application.In this review,we initiate by introducing the current OER reaction mechanisms,namely adsorbate evolution mechanism and lattice oxygen mechanism,with degradation mechanisms discussed.Optimized strategies in the preparation of advanced Ir-based catalysts are further introduced,with merits and potential problems also discussed.The parameters that determine the performance of PEMWE are then introduced,with unsolved issues and related outlooks summarized in the end.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS-2024-00436563)supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(Grant No.RS-2023-00284361).
文摘Seawater is the most abundant source of molecular hydrogen.Utilizing the hydrogen reserves present in the seawater may inaugurate innovative strategies aimed at advancing sustainable energy and environmental preservation endeavors in the future.Recently,there has been a surge in study in the field addressing the production of hydrogen through the electrochemical seawater splitting.However,the performance and durability of the electrode have limitations due to the fact that there are a few challenges that need to be addressed in order to make the technology suitable for the industrial purpose.The active site blockage caused by chloride ions that are prevalent in seawater and chloride corrosion is the most significant issue;it has a negative impact on both the activity and the durability of the anode component.Addressing this particular issue is of upmost importance in the seawater splitting area.This review concentrates on the newly developed materials and techniques for inhibiting chloride ions by blocking the active sites,simultaneously preventing the chloride corrosion.It is anticipated that the concept will be advantageous for a large audience and will inspire researchers to study on this particular area of concern.
基金sponsored by the National Natural Science Foundation of China(No.22276153).The authors would like to thank the Shiyanjia Lab for the XRD test.
文摘Spent lead paste(SLP)presents a major recycling challenge in lead-acid battery treatment due to its insoluble lead compounds.This study develops an innovative and environmentally sustainable approach by integrating(NH_(4))_(2)SO_(4)-NH_(3)·H_(2)O with suspension electrolysis,effectively converting poorly soluble PbSO_(4)into soluble[Pb(NH_(3))_(4)]^(2+)complexes.The electrolytic conversion mechanisms of SLP components are systematically elucidated,revealing four distinct transformation pathways:1)metallic Pb undergoes complete dissolution as[Pb(NH_(3))_(4)]^(2+)complexes followed by cathodic reduction to elemental lead;2)PbO_(2)increases after suspension electrolysis since part of PbO is oxidized;3)PbO demonstrates dual behavior,with 45.74%undergoing anodic oxidation to PbO_(2) while the remainder(54.26%)participates in cathodic electrodeposition;4)PbSO_(4)exhibits triple conversion routes,including:1)32.98%transformation through intermediate(NH_(4))Pb(OH)SO_(4)formation followed by anodic conversion to PbO·PbSO_(4),2)21.36%direct cathodic reduction to metallic lead,and 3)the residual fraction maintaining soluble[Pb(NH_(3))_(4)]^(2+)speciation in the electrolyte.The optimized process achieves exceptional current efficiency(95.49%)and lead recovery(45.67%),with anode residues comprising 67.58%PbO_(2)and 32.42%PbO·PbSO_(4).Remarkably,this process exhibits significant economic and environmental advantages,with recycling 1 kg of SLP through the(NH_(4))_(2)SO_(4)-NH_(3)·H_(2)O suspension electrolysis process resulting in a net profit of 0.3466 USD and a reduction in carbon emissions of 119.758 kg CO_(2)eq.,offering dual advantages of environmental and economic benefits.This work provides fundamental insights into lead phase conversion during suspension electrolysis while presenting a practical,effective solution for battery recycling industries.
基金part of a research project, PIF 726175Alfaisal University and its Office of Research & Innovation for their continuous support throughout this study。
文摘Direct electrolysis of seawater to produce green hydrogen is a more environmentally friendly process than freshwater electrolysis.The renewable energy sector exhibits tremendous interest in practical seawater electrolysis techniques due to its substantial capacity to mitigate the need for freshwater consumption.With the low catalytic efficiency of the current seawater splitting process and the poor reliability of its operation,the process suffers from severe corrosion caused by chloride ions,as well as anodic competition between oxygen evolution and chlorine oxidation reactions.This review provides an overview of the latest electrocatalyst developments for promoting selectivity and stability in seawater electrolysis.Using the characterization and simulation results,as well as active machine learning,advanced electrocatalytic materials can be designed and developed,a research direction that will become increasingly important in the future.A variety of strategies are discussed in detail for designing advanced electrocatalysts in seawater electrolysis,including the surface protective layer,structural regulation by heteroatom doping and vacancies,porous structure,core-shell construction,and 3D hetero-structure construction to hinder chlorine evolution reactions.Finally,future perspectives and challenges for green hydrogen production from seawater electrolysis are also described.
基金supported by the National Natural Science Foundation of China(22162004,22479031)the Guangxi Science and Technology Program(2023AB38061)+1 种基金the Innovation Project of Guangxi Graduate Education(YCBZ2024053)the Highperformance Computing Platform of Guangxi University。
文摘The oxophilicity of metal oxides is usually utilized to improve the ammonia oxidation reaction(AOR)activity of Pt-based catalysts.But the effect of strong interaction between Pt and metal oxides on AOR is not studied.Herein,experimental and density functional theory calculation results indicate that a strong interaction is built between Pt and reducible CeOx by high-temperature reduction,which induces the electronic interaction due to the difference of work fu nction,then optimizing the competitive adsorption behavior of*OH and*NH_(3)based on hard-soft acid-base principle.Accordingly,the optimal sample achieves an AOR peak current density of 329 mA mg_(Pt)^(-1),which is 2.4 times that of Pt.Meanwhile,it also shows satisfied hydrogen evolution reaction activity with an overpotential of only 24.3 mV at-10 mA cm^(-2)due to the optimization of*H adsorption energy on Pt by CeO_(x).Therefore,this work proposes an AOR activity enhancement mechanism of metal oxides in terms of the strong interaction,and sheds light on developing effective bifunctional catalysts for ammonia electrolysis.