The electrohydrodynamics (EHD) enhancement of convection heat transfer of water in a jacket tube heat exchanger was studied through an experimental method in this paper. In the experiment,a DC high voltage electrode...The electrohydrodynamics (EHD) enhancement of convection heat transfer of water in a jacket tube heat exchanger was studied through an experimental method in this paper. In the experiment,a DC high voltage electrode was set in the central tube-side of the heat exchanger,and the high voltage electrode in the tube-side was adjustable in the range of 0-40 kV. Five differ-ent combinations of heat transfer enhancement experiments were conducted under the different voltage and rate of flow. The results indicate that the maximal enhancement coefficient θ is 1.224 when the flow rate of tube-side inlet is 0.1 m3/h. It is proved that,for the work medium of water,the convective heat transfer can be enhanced by applying high electric field. The performance of EHD-enhanced is sensitive to the variation of flow rate,and in the same flow rate,there exist an optimized voltage in the EHD-enhanced process ra-ther than the monotonic positive-correlation relationship.展开更多
A droplet generator is one of a key module for realizing the Sn-LPP EUV light source.One way of improving a conversion efficiency(CE)and relax tin contamination issue of Sn-LPP EUV light source is to produce tin dropl...A droplet generator is one of a key module for realizing the Sn-LPP EUV light source.One way of improving a conversion efficiency(CE)and relax tin contamination issue of Sn-LPP EUV light source is to produce tin droplet targets with suitable size.Less than several 10-μm nozzles are used to generate tin droplets.Particles from environment and chemical reaction compounds with high temperature tin cause nozzle clogging issue often.It is significant to develop a technical approach using a large diameter nozzle to produce mass-limited targets.Therefore,this paper demonstrated droplet ejection experiments based on electrohydrodynamics(EHD).Characteristics of isopropanol(IPA)droplet ejection by EHD droplet production platform that was designed and constructed in our laboratory.Characteristics of various process parameters on the IPA droplet production process were investigated.Images of droplet formation process were observed by using a droplet observation system and analyzed by image analysis software.Consequently,the smallest IPA droplet with a diameter of 13μm could be produced using a nozzle with a diameter of 50μm.Additionally,the EHD method could make droplets from 13μm to 55μm with applying voltage from 5.5 kV to 2.5 kV.In the future,EHD will apply to make mass-limited tin droplet targets under vacuum and high-temperature conditions,in order to increase the CE and to decrease tin debris.展开更多
This review article presents an overview on the application of electrohydrodynamics and Joule heating effects in microfluidic chips.A brief introduction of microfluidic chips and a classification of electrohydrodynami...This review article presents an overview on the application of electrohydrodynamics and Joule heating effects in microfluidic chips.A brief introduction of microfluidic chips and a classification of electrohydrodynamics as well as the applications in microfluidic devices are first given.Then basic theories and governing equations of classical electromagnetics are summarized and electroviscous effects in pressure driven flows in a microchannel are presented.Principles and applications of DC electrokinetics,including DC electroosmotic flow,DC electrophoresis,as well as principles of AC electrokinetics,including AC electroosmotic flow and dielectrophoresis are also reviewed.Finally,Joule heating effects in both DC and AC electrokinetics,especially the newly discovered electrothermal flow,are summaried.展开更多
The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to furthe...The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to further investigate the effect of ion solvation energy on the evaporation of cations and anions from ionic liquid under the action of a uniform electric field, this paper establishes a transient Electrohydrodynamic (EHD) model for free ionic liquid droplets undergoing ion evaporation. The dynamic processes of droplet deformation and ion evaporation are simulated. And the study further focuses on the influence of different ion solvation energies for cations on the droplet morphology and the ion evaporation characteristics at the positively charged end and negatively charged end of the droplet. The results indicate that, when the ion solvation energy for cations is higher than that of anions, it will cause the ion evaporation at the positively charged end of the droplet to lag behind the ion evaporation at the negatively charged end. And the higher the ion solvation energy for the cations, the longer the evaporation lag time at the positively charged end of the droplet, which will lead to a higher peak of surface charge density that can be reached, resulting in a larger evaporation current and sharper droplet stretching deformation. Additionally, the peak surface charge density of the positively charged end of the droplet is linearly related to the ion solvation energy for cations, while the peak surface charge density of the negatively charged end remains almost unchanged and is not significantly affected by the ion solvation energy for cations.展开更多
Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor m...Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.展开更多
Electrohydrodynamic(EHD)jet printing represents a novel micro/nano-scale additive manufacturing process that utilises a high-voltage induced electric field between the nozzle and the substrate to print micro/nanoscale...Electrohydrodynamic(EHD)jet printing represents a novel micro/nano-scale additive manufacturing process that utilises a high-voltage induced electric field between the nozzle and the substrate to print micro/nanoscale structures.EHD printing is particularly advantageous for the fabrication on flexible or non-flat substrates and of large aspect ratio micro/nanostructures and composite multi-material structures.Despite this,EHD printing has yet to be fully industrialised due to its low throughput,which is primarily caused by the limitations of serial additive printing technology.The parallel multi-nozzle array-based process has become the most promising option for EHD printing to achieve large-scale printing by increasing the number of nozzles to realise multichannel parallel printing.This paper reviews the recent development of multi-nozzle EHD printing technology,analyses jet motion with multi-nozzle,explains the origins of the electric field crosstalk effect under multi-nozzle and discusses several widely used methods for overcoming it.This work also summarises the impact of different process parameters on multi-nozzle EHD printing and describes the current manufacturing process using multi-nozzle as well as the method by which they can be realised independently.In addition,it presents an additional significant utilisation of multi-nozzle printing aside from enhancing single-nozzle production efficiency,which is the production of composite phase change materials through multi-nozzle.Finally,the future direction of multi-nozzle EHD printing development is discussed and envisioned.展开更多
Piezoceramic is ubiquitously used in high-performance sensors and actuators.Three-dimensional(3D)printing of lead zirconate titanate(PZT)is attractive and highly desired for such device applications,but most of the ex...Piezoceramic is ubiquitously used in high-performance sensors and actuators.Three-dimensional(3D)printing of lead zirconate titanate(PZT)is attractive and highly desired for such device applications,but most of the existing methods are inherently limited to micron resolution,which makes them untenable for fabricating complex 3D architectures with high-definition features.Here,an electrohydrodynamic jet(E-Jet)nanoprinting strategy has been proposed to fabricate PZT 3D structures with the characteristics of flexibility and scalability.Different kinds of 3D PZT true nanostructures(resolution∼40 nm,aspect ratio∼400)were directly fabricated using a 100μm-sized nozzle.And the PZT nanostructures exhibited well-developed perovskite crystal morphology,large elastic strain(elongation≈13%),and high piezoelectric property(d_(31)≈(236.5×10^(−12))C·N^(-1)).A bionic PZT air-flow sensor was printed to monitor air-flow detection,demonstrating well sensitivity with ultra-slow air-flow of 0.02 m·s^(-1).The discovery reveals an efficient pathway to 3D-printing PZT nanostructures for next-generation high-performance piezoelectric devices.展开更多
Metal-organic frameworks(MOFs)have attracted significant attention for energy storage applications due to their high surface area and tunable chemical properties.However,integrating MOFs into flexible,microstructured ...Metal-organic frameworks(MOFs)have attracted significant attention for energy storage applications due to their high surface area and tunable chemical properties.However,integrating MOFs into flexible,microstructured electrodes with good structural stability and printability remains challenging.In this study,electrohydrodynamic(EHD)jet printing was employed to fabricate microstructured supercapacitor electrodes based on a composite of ZIF-67(cobalt-based MOF)and polycaprolactone(PCL).ZIF-67 with high surface area and redox activity was embedded in a PCL matrix that helped regulate ink viscosity and offered structural support for the electrodes.The as-prepared hybrid electrodes exhibited uniform structure and tunable fiber spacing.Structural and compositional characterizations confirmed the successful integration of ZIF-67 and PCL,with homogeneous elemental distribution and well-defined Co-N coordination.Electrochemical evaluations demonstrated promising capacitive behavior,with a specific capacitance of∼230 mF/g and capacitance retention of 83%after 5000 cycles.These results highlight the potential of EHD printing for constructing MOF-based microelectrodes with controlled architectures,offering a new strategy for flexible and high-performance energy storage systems.展开更多
Fluid manipulation is very important in any lab-on-a-chip system. This paper analyses phenomena which use the alternating current (AC) electric field to deflect and manipulate coflowing streams of two different elec...Fluid manipulation is very important in any lab-on-a-chip system. This paper analyses phenomena which use the alternating current (AC) electric field to deflect and manipulate coflowing streams of two different electrolytes (with conductivity gradient) within a microfluidic channel. The basic theory of the electrohydrodynamics and simulation of the analytical model are used to explain the phenomena. The velocity induced for different voltages and conductivity gradient are computed. The results show that when the AC electrical signal is applied on the electrodes, the fluid with higher conductivity occupies a larger region of the channel and the interface of the two fluids is deflected. It will provide some basic reference for people who want to do more study in the control of different fluids with conductivity gradient in a microfluidic channel.展开更多
This paper presents the design,optimization and fabrication of an EHD air pump intended for high-power electronic chip cooling applications.Suitable high-voltage electrode configurations were selected and studied,in t...This paper presents the design,optimization and fabrication of an EHD air pump intended for high-power electronic chip cooling applications.Suitable high-voltage electrode configurations were selected and studied,in terms of the characteristics of the generated electric field,which play an important role in ionic wind flow.For this purpose,dedicated software is used to implement finite element analysis.Critical design parameters,such as the electric field intensity,wind velocity,current flow and power consumption are investigated.Two different laboratory prototypes are fabricated and their performances experimentally assessed.This procedure leads to the fabrication of a final prototype,which is then tested as a replacement of a typical fan for cooling a high power density electronic chip.To assist towards that end,an experimental thermal testing setup is designed and constructed to simulate the size of a personal computer’s CPU core of variable power.The parametric study leads to the fabrication of experimental single-stage EHD pumps,the optimal design of which is capable of delivering an air flow of 51 CFM with an operating voltage of 10.5 kV.Finally,the theoretical and experimental results are evaluated and potential applications are proposed.展开更多
An energy method is proposed to investigate the critical transformation condition from a Taylor cone to a cone-jet. Based on the kinetic theorem, the system power allocation and the electrohydrodynamics stability are ...An energy method is proposed to investigate the critical transformation condition from a Taylor cone to a cone-jet. Based on the kinetic theorem, the system power allocation and the electrohydrodynamics stability are discussed. The numerical results indicate that the energy of the liquid cone tip experiences a maximum value during the transformation. With the proposed jetting energy, we give the critical transformation condition under which the derivative of jetting energy with respect to the surface area is greater than or equal to the energy required to form a unit of new liquid surface.展开更多
In this paper,an equation system of electrohydrodynamics(EHD)based onthe fluid motion equations is discussed.Emphasis is put on the effects of electrical forceand surface tension upon the fluid motion.The Marker and C...In this paper,an equation system of electrohydrodynamics(EHD)based onthe fluid motion equations is discussed.Emphasis is put on the effects of electrical forceand surface tension upon the fluid motion.The Marker and Cell method is used to set up acomputational simulation program of electrically driven motion of fluid.With the help ofthe program,a cylindrical fluid under the influences of electrical field and surface tensionhas been calculated.The result is in good agreement with the experimental observation.展开更多
The surface instability of Kelvin-Helmholtz type bounded above by a porous layer and below by a rigid surface is investigated using linear stability analysis. Here we adopt the theory based on electrohydrodynamic as w...The surface instability of Kelvin-Helmholtz type bounded above by a porous layer and below by a rigid surface is investigated using linear stability analysis. Here we adopt the theory based on electrohydrodynamic as well as Stokes and lubrication approximations. We replace the effect of boundary layer with Beavers and Joseph slip condition. Here we have studied the combined effect of electric and magnetic fields on Kelvin-Helmholtz instability (KHI) in a fluid layer bounded above by a porous layer and below by a rigid surface. The dispersion relation is obtained using suitable boundary and surface conditions and results are depicted graphically. Also the ratio Gm is numerically computed for different values of We and M given in the Table 1. From this it is clear that the combined effect of electric and magnetic fields with porous layer are more effective than the effect of compressibility in reducing the growth rate of RTI. Also, these results shows that with a proper choice of magnetic field it is possible to control the growth rate of Electrohydrody-namic KHI (EKHI) and hence can be restored the symmetry of IFE target.展开更多
This paper describes an experimental and theoretical study on an extraction phenomenon of liquids occurring at an air gap between the liquid surface and the electrode by applying a direct current (DC) or low-frequency...This paper describes an experimental and theoretical study on an extraction phenomenon of liquids occurring at an air gap between the liquid surface and the electrode by applying a direct current (DC) or low-frequency alternating current (AC) voltage. Three liquids with a different physical property;2,3-dihydrodecafluoropenten, palm fatty acid ester oil and crude rapeseed oil are used as working liquids. The electrode configuration is the sphere or plane (high voltage electrode) to grounded plane electrode. The grounded plane electrode is fixed to the bottom of the test vessel with working liquid and the high voltage electrode is installed in an air above the liquid surface against the grounded plane electrode. The liquid surface swells towards the high voltage electrode by the increase of voltage and the liquid is extracted in a short time, thereafter the air gap between the liquid surface and the high voltage electrode is bridged at a thick liquid column. Such the liquid behavior displays unique features with voltage polarity effect for each working liquid. The relationship between the applied voltage, current variation, height of swollen liquid, force pulling liquid and dynamic feature of liquid is examined experimentally. The liquid behavior is considered theoretically based on experimental observations.展开更多
The investigation on bubble behavior in electric field helps to analyze the mechanism of electric enhancement of boiling heat transfer. Experiments were performed to investigate the bubble deformation in direct curre...The investigation on bubble behavior in electric field helps to analyze the mechanism of electric enhancement of boiling heat transfer. Experiments were performed to investigate the bubble deformation in direct current (DC) electric field with bubbles attached to the orifice. The air bubbles were slowly generated in the transformer oil pool at different orifices, so that the effect of flow on bubble shape was eliminated. The results showed that the bubbles were elongated and the departure volume decreased when the electric field was intensified. The major and minor axes, aspect ratio and departure volume increased with increasing the orifice diameter. Both the electric field and orifice size have great influence on bubble behavior. The bubble deformation was also simulated to compare with the experimental results. The numerical and experimental data qualitatively agree with each other.展开更多
Bioprinting has been widely investigated for tissue engineering and regenerative medicine applications.However,it is still difficult to reconstruct the complex native cell arrangement due to the limited printing resol...Bioprinting has been widely investigated for tissue engineering and regenerative medicine applications.However,it is still difficult to reconstruct the complex native cell arrangement due to the limited printing resolution of conventional bioprinting techniques such as extrusion-and inkjet-based printing.Recently,an electrohydrodynamic(EHD)bioprinting strategy was reported for the precise deposition of well-organized cell-laden constructs with microscale filament size,whereas few studies have been devoted to developing bioinks that can be applied for EHD bioprinting and simultaneously support cell spreading.This study describes functionalized alginate-based bioinks for microscale EHD bioprinting using peptide grafting and fibrin incorporation,which leads to high cell viability(>90%)and cell spreading.The printed filaments can be further refined to as small as 30μm by incorporating polyoxyethylene and remained stable over one week when exposed to an aqueous environment.By utilizing the presented alginate-based bioinks,layer-specific cell alignment along the printing struts could be observed inside the EHD-printed microscale filaments,which allows fabricating living constructs with cell-scale filament resolution for guided cellular orientation.展开更多
In this study, we developed a polymeric nanofiber patch(PNP) for topical disease treatment using electrohydrodynamic atomization(EHDA). The nanofibers were prepared using various concentrations of polyvinyl alcohol(PV...In this study, we developed a polymeric nanofiber patch(PNP) for topical disease treatment using electrohydrodynamic atomization(EHDA). The nanofibers were prepared using various concentrations of polyvinyl alcohol(PVA) and tamarind seed gum and loaded with clindamycin HCl as a model drug. The precursor polymer solutions were sprayed using the EHDA technique; the EHDA processing parameters were optimized to obtain blank and drug-loaded PNPs. The skin adherence, translucence, and ventilation properties of the prepared PNPs indicated that they are appropriate for topical application. The conductivity of the polymer solution increased with increasing PVA and clindamycin concentrations, and increasing the PVA concentration enhanced the solution viscosity. Based on scanning electron microscopy analysis, the PVA concentration had a pronounced effect on the morphology of the sprayed product. Nanofibers were fabricated successfully when the solution PVA concentration was 10%, 13%, or 15%(w/v). The applied voltage significantly affected the diameters of the prepared nanofibers, and the minimum nanofiber diameter was 163.86 nm. Differential scanning calorimetry and X-ray diffraction analyses indicated that the modeldrug was dispersed in PVA in an amorphous form. The PNP prepared with a PVA:gum ratio of 9:1 absorbed water better than the PVA-only PNP and the PNP with a PVA:gum ratio of 9.5:0.5. Moreover, the PNPs loaded with clindamycin at concentrations of 1%–3% prohibited the growth of Staphylococcus aureus more effectively than clindamycin gel, a commercially available product.展开更多
Electrohydrodynamic(EHD)3D printing of ca rbon-based materials in the form of orderly networks can have various applications.In this work,microscale carbon/nickel(C-Ni)composite electrodes with controlled porosity hav...Electrohydrodynamic(EHD)3D printing of ca rbon-based materials in the form of orderly networks can have various applications.In this work,microscale carbon/nickel(C-Ni)composite electrodes with controlled porosity have been utilized in electrochemical energy storage of supercapacitors.Polyacrylonitrile(PAN)was chosen as the basic material for its excellent carbonization performance and EHD printing property.Nickel nitrate(Ni(NO_(3))_(2))was incorporated to form Ni nanoparticles which can improve the conductivity and the capacitance performance of the electrode.Well-aligned PAN-Ni(NO_(3))_(2) composite structures have been fabricated and carbonized as C-Ni electrodes with the typical diameter of 9.2±2.1μm.The porosity of the as-prepared C-Ni electrode can be controlled during the EHD process.Electrochemical results show the C-Ni network electrode has achieved a 2.3 times higher areal specific capacitance and 1.7 times higher mass specific capacitance than those of a spin-coated electrode.As such,this process offers a facile and scalable strategy for the fabrication of orderly carbon-based conductive structures for various applications such as energy storage devices and printable electronics.展开更多
The electroosmotic flow of a micropolar fluid in a microchannel bounded by two parallel porous plates undergoing periodic vibration is studied. The equations for conservation of linear and angular momentums and Gauss...The electroosmotic flow of a micropolar fluid in a microchannel bounded by two parallel porous plates undergoing periodic vibration is studied. The equations for conservation of linear and angular momentums and Gauss's law of charge distribution are solved within the framework of the Debye-Hückel approximation. The fluid velocity and microrotation are assumed to depend linearly on the Reynolds number. The study shows that the amplitude of microrotation is highly sensitive to the changes in the magnitude of the suction velocity and the width of the microchannel. An increase in the micropolar parameter gives rise to a decrease in the amplitude of microrotation. Numerical estimates reveal that the microrotation of the suspended microelements in blood also plays an important role in controlling the electro-osmotically actuated flow dynamics in microbio-fluidic devices.展开更多
基金Supported by the National Natural Science Foundation of China (51006076, 50906065)the Program for Excellent Young and Mid-dle-Aged Researchers in Hubei Province (Q20081508)
文摘The electrohydrodynamics (EHD) enhancement of convection heat transfer of water in a jacket tube heat exchanger was studied through an experimental method in this paper. In the experiment,a DC high voltage electrode was set in the central tube-side of the heat exchanger,and the high voltage electrode in the tube-side was adjustable in the range of 0-40 kV. Five differ-ent combinations of heat transfer enhancement experiments were conducted under the different voltage and rate of flow. The results indicate that the maximal enhancement coefficient θ is 1.224 when the flow rate of tube-side inlet is 0.1 m3/h. It is proved that,for the work medium of water,the convective heat transfer can be enhanced by applying high electric field. The performance of EHD-enhanced is sensitive to the variation of flow rate,and in the same flow rate,there exist an optimized voltage in the EHD-enhanced process ra-ther than the monotonic positive-correlation relationship.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA 0380000 and 0380300).
文摘A droplet generator is one of a key module for realizing the Sn-LPP EUV light source.One way of improving a conversion efficiency(CE)and relax tin contamination issue of Sn-LPP EUV light source is to produce tin droplet targets with suitable size.Less than several 10-μm nozzles are used to generate tin droplets.Particles from environment and chemical reaction compounds with high temperature tin cause nozzle clogging issue often.It is significant to develop a technical approach using a large diameter nozzle to produce mass-limited targets.Therefore,this paper demonstrated droplet ejection experiments based on electrohydrodynamics(EHD).Characteristics of isopropanol(IPA)droplet ejection by EHD droplet production platform that was designed and constructed in our laboratory.Characteristics of various process parameters on the IPA droplet production process were investigated.Images of droplet formation process were observed by using a droplet observation system and analyzed by image analysis software.Consequently,the smallest IPA droplet with a diameter of 13μm could be produced using a nozzle with a diameter of 50μm.Additionally,the EHD method could make droplets from 13μm to 55μm with applying voltage from 5.5 kV to 2.5 kV.In the future,EHD will apply to make mass-limited tin droplet targets under vacuum and high-temperature conditions,in order to increase the CE and to decrease tin debris.
基金Supported by the National Natural Science Foundation of China(Grant No.50536010)the Shanghai Municipal Science&Technology Committee through Key Fundamental(Grant No.08JC1411100)
文摘This review article presents an overview on the application of electrohydrodynamics and Joule heating effects in microfluidic chips.A brief introduction of microfluidic chips and a classification of electrohydrodynamics as well as the applications in microfluidic devices are first given.Then basic theories and governing equations of classical electromagnetics are summarized and electroviscous effects in pressure driven flows in a microchannel are presented.Principles and applications of DC electrokinetics,including DC electroosmotic flow,DC electrophoresis,as well as principles of AC electrokinetics,including AC electroosmotic flow and dielectrophoresis are also reviewed.Finally,Joule heating effects in both DC and AC electrokinetics,especially the newly discovered electrothermal flow,are summaried.
基金supported by the National Key R&D Program of China(No.2020YFC2201100)the National Natural Science Foundation of China(Nos.12175032,12102082,12275044,12402327,12405290 and 12211530449)+4 种基金the Joint Program of the Science and Technology Program of Liaoning,China(No.2023JH2/101700285)the Fundamental Research Funds for the Central Universities of China(Nos.DUT22RC(3)078,DUT23RC(3)040 and DUT24ZD106)the S&T Program of Hebei,China(No.246Z2301G)the S&T Innovation Program of Hebei,China(Nos.SJMYF2022X18 and SJMYF2022X06)the Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology and Advanced Space Propulsion Laboratory of BICE,China(No.LabASP-2023-07).
文摘The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to further investigate the effect of ion solvation energy on the evaporation of cations and anions from ionic liquid under the action of a uniform electric field, this paper establishes a transient Electrohydrodynamic (EHD) model for free ionic liquid droplets undergoing ion evaporation. The dynamic processes of droplet deformation and ion evaporation are simulated. And the study further focuses on the influence of different ion solvation energies for cations on the droplet morphology and the ion evaporation characteristics at the positively charged end and negatively charged end of the droplet. The results indicate that, when the ion solvation energy for cations is higher than that of anions, it will cause the ion evaporation at the positively charged end of the droplet to lag behind the ion evaporation at the negatively charged end. And the higher the ion solvation energy for the cations, the longer the evaporation lag time at the positively charged end of the droplet, which will lead to a higher peak of surface charge density that can be reached, resulting in a larger evaporation current and sharper droplet stretching deformation. Additionally, the peak surface charge density of the positively charged end of the droplet is linearly related to the ion solvation energy for cations, while the peak surface charge density of the negatively charged end remains almost unchanged and is not significantly affected by the ion solvation energy for cations.
基金supported by the National Natural Science Foundation of China(No.62374142)Fundamental Research Funds for the Central Universities(Nos.20720220085 and 20720240064)+2 种基金External Cooperation Program of Fujian(No.2022I0004)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)Xiamen Natural Science Foundation Youth Project(No.3502Z202471002)。
文摘Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.
基金National Natural Science Foundation of China(Grant Nos.52275345,52175331)the Support plan for Outstanding Youth Innovation Team in Universities of Shandong Province,China(2021KJ044)Natural Science Foundation of Shandong Province,China(Granted No.ZR2020ZD04)。
文摘Electrohydrodynamic(EHD)jet printing represents a novel micro/nano-scale additive manufacturing process that utilises a high-voltage induced electric field between the nozzle and the substrate to print micro/nanoscale structures.EHD printing is particularly advantageous for the fabrication on flexible or non-flat substrates and of large aspect ratio micro/nanostructures and composite multi-material structures.Despite this,EHD printing has yet to be fully industrialised due to its low throughput,which is primarily caused by the limitations of serial additive printing technology.The parallel multi-nozzle array-based process has become the most promising option for EHD printing to achieve large-scale printing by increasing the number of nozzles to realise multichannel parallel printing.This paper reviews the recent development of multi-nozzle EHD printing technology,analyses jet motion with multi-nozzle,explains the origins of the electric field crosstalk effect under multi-nozzle and discusses several widely used methods for overcoming it.This work also summarises the impact of different process parameters on multi-nozzle EHD printing and describes the current manufacturing process using multi-nozzle as well as the method by which they can be realised independently.In addition,it presents an additional significant utilisation of multi-nozzle printing aside from enhancing single-nozzle production efficiency,which is the production of composite phase change materials through multi-nozzle.Finally,the future direction of multi-nozzle EHD printing development is discussed and envisioned.
基金supported by National Natural Science Foundation of China(Grant No.52105577)Natural Science Foundation of Zhejiang Province(Grant No.LQ22E050001)+3 种基金Natural Science Foundation of Ningbo(Grant Nos.2024J427 and 2023J376)China Postdoctoral Science Foundation(Grant No.2024M753510)Ningbo Yongjiang Talent Introduction Programme(Grant No.2021A-137-G)Research Grants Council of the Hong Kong Special Administrative Region,China(Grant Nos.11200623 and RFS2021-1S05).
文摘Piezoceramic is ubiquitously used in high-performance sensors and actuators.Three-dimensional(3D)printing of lead zirconate titanate(PZT)is attractive and highly desired for such device applications,but most of the existing methods are inherently limited to micron resolution,which makes them untenable for fabricating complex 3D architectures with high-definition features.Here,an electrohydrodynamic jet(E-Jet)nanoprinting strategy has been proposed to fabricate PZT 3D structures with the characteristics of flexibility and scalability.Different kinds of 3D PZT true nanostructures(resolution∼40 nm,aspect ratio∼400)were directly fabricated using a 100μm-sized nozzle.And the PZT nanostructures exhibited well-developed perovskite crystal morphology,large elastic strain(elongation≈13%),and high piezoelectric property(d_(31)≈(236.5×10^(−12))C·N^(-1)).A bionic PZT air-flow sensor was printed to monitor air-flow detection,demonstrating well sensitivity with ultra-slow air-flow of 0.02 m·s^(-1).The discovery reveals an efficient pathway to 3D-printing PZT nanostructures for next-generation high-performance piezoelectric devices.
基金supported by National Natural Science Foundation of China(Grant No.52305426)Postdoctoral Research Foundation of China(Grant No.2022M722690)+1 种基金State Key Laboratory for Manufacturing Systems Engineering(Grant No.sklms2022014)Yangzhou Innovation Capability Enhancement Program(Grant No.YZ2022170).
文摘Metal-organic frameworks(MOFs)have attracted significant attention for energy storage applications due to their high surface area and tunable chemical properties.However,integrating MOFs into flexible,microstructured electrodes with good structural stability and printability remains challenging.In this study,electrohydrodynamic(EHD)jet printing was employed to fabricate microstructured supercapacitor electrodes based on a composite of ZIF-67(cobalt-based MOF)and polycaprolactone(PCL).ZIF-67 with high surface area and redox activity was embedded in a PCL matrix that helped regulate ink viscosity and offered structural support for the electrodes.The as-prepared hybrid electrodes exhibited uniform structure and tunable fiber spacing.Structural and compositional characterizations confirmed the successful integration of ZIF-67 and PCL,with homogeneous elemental distribution and well-defined Co-N coordination.Electrochemical evaluations demonstrated promising capacitive behavior,with a specific capacitance of∼230 mF/g and capacitance retention of 83%after 5000 cycles.These results highlight the potential of EHD printing for constructing MOF-based microelectrodes with controlled architectures,offering a new strategy for flexible and high-performance energy storage systems.
基金Project supported by the 111 Project (Grant No B07018)
文摘Fluid manipulation is very important in any lab-on-a-chip system. This paper analyses phenomena which use the alternating current (AC) electric field to deflect and manipulate coflowing streams of two different electrolytes (with conductivity gradient) within a microfluidic channel. The basic theory of the electrohydrodynamics and simulation of the analytical model are used to explain the phenomena. The velocity induced for different voltages and conductivity gradient are computed. The results show that when the AC electrical signal is applied on the electrodes, the fluid with higher conductivity occupies a larger region of the channel and the interface of the two fluids is deflected. It will provide some basic reference for people who want to do more study in the control of different fluids with conductivity gradient in a microfluidic channel.
文摘This paper presents the design,optimization and fabrication of an EHD air pump intended for high-power electronic chip cooling applications.Suitable high-voltage electrode configurations were selected and studied,in terms of the characteristics of the generated electric field,which play an important role in ionic wind flow.For this purpose,dedicated software is used to implement finite element analysis.Critical design parameters,such as the electric field intensity,wind velocity,current flow and power consumption are investigated.Two different laboratory prototypes are fabricated and their performances experimentally assessed.This procedure leads to the fabrication of a final prototype,which is then tested as a replacement of a typical fan for cooling a high power density electronic chip.To assist towards that end,an experimental thermal testing setup is designed and constructed to simulate the size of a personal computer’s CPU core of variable power.The parametric study leads to the fabrication of experimental single-stage EHD pumps,the optimal design of which is capable of delivering an air flow of 51 CFM with an operating voltage of 10.5 kV.Finally,the theoretical and experimental results are evaluated and potential applications are proposed.
基金supported by the National Basic Research Program of China(Grant No.2013CB733004)
文摘An energy method is proposed to investigate the critical transformation condition from a Taylor cone to a cone-jet. Based on the kinetic theorem, the system power allocation and the electrohydrodynamics stability are discussed. The numerical results indicate that the energy of the liquid cone tip experiences a maximum value during the transformation. With the proposed jetting energy, we give the critical transformation condition under which the derivative of jetting energy with respect to the surface area is greater than or equal to the energy required to form a unit of new liquid surface.
文摘In this paper,an equation system of electrohydrodynamics(EHD)based onthe fluid motion equations is discussed.Emphasis is put on the effects of electrical forceand surface tension upon the fluid motion.The Marker and Cell method is used to set up acomputational simulation program of electrically driven motion of fluid.With the help ofthe program,a cylindrical fluid under the influences of electrical field and surface tensionhas been calculated.The result is in good agreement with the experimental observation.
文摘The surface instability of Kelvin-Helmholtz type bounded above by a porous layer and below by a rigid surface is investigated using linear stability analysis. Here we adopt the theory based on electrohydrodynamic as well as Stokes and lubrication approximations. We replace the effect of boundary layer with Beavers and Joseph slip condition. Here we have studied the combined effect of electric and magnetic fields on Kelvin-Helmholtz instability (KHI) in a fluid layer bounded above by a porous layer and below by a rigid surface. The dispersion relation is obtained using suitable boundary and surface conditions and results are depicted graphically. Also the ratio Gm is numerically computed for different values of We and M given in the Table 1. From this it is clear that the combined effect of electric and magnetic fields with porous layer are more effective than the effect of compressibility in reducing the growth rate of RTI. Also, these results shows that with a proper choice of magnetic field it is possible to control the growth rate of Electrohydrody-namic KHI (EKHI) and hence can be restored the symmetry of IFE target.
文摘This paper describes an experimental and theoretical study on an extraction phenomenon of liquids occurring at an air gap between the liquid surface and the electrode by applying a direct current (DC) or low-frequency alternating current (AC) voltage. Three liquids with a different physical property;2,3-dihydrodecafluoropenten, palm fatty acid ester oil and crude rapeseed oil are used as working liquids. The electrode configuration is the sphere or plane (high voltage electrode) to grounded plane electrode. The grounded plane electrode is fixed to the bottom of the test vessel with working liquid and the high voltage electrode is installed in an air above the liquid surface against the grounded plane electrode. The liquid surface swells towards the high voltage electrode by the increase of voltage and the liquid is extracted in a short time, thereafter the air gap between the liquid surface and the high voltage electrode is bridged at a thick liquid column. Such the liquid behavior displays unique features with voltage polarity effect for each working liquid. The relationship between the applied voltage, current variation, height of swollen liquid, force pulling liquid and dynamic feature of liquid is examined experimentally. The liquid behavior is considered theoretically based on experimental observations.
基金the National Key Basic Research Program of China (G2000026301)Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, China
文摘The investigation on bubble behavior in electric field helps to analyze the mechanism of electric enhancement of boiling heat transfer. Experiments were performed to investigate the bubble deformation in direct current (DC) electric field with bubbles attached to the orifice. The air bubbles were slowly generated in the transformer oil pool at different orifices, so that the effect of flow on bubble shape was eliminated. The results showed that the bubbles were elongated and the departure volume decreased when the electric field was intensified. The major and minor axes, aspect ratio and departure volume increased with increasing the orifice diameter. Both the electric field and orifice size have great influence on bubble behavior. The bubble deformation was also simulated to compare with the experimental results. The numerical and experimental data qualitatively agree with each other.
基金This work was financially supported by the National Key Research and Development Program of China(No.2018YFA0703003)the National Natural Science Foundation of China(No.52125501)+1 种基金the Key Research Project of Shaanxi Province(Nos.2021LLRH-08,2020GXLH-Y-021,and 2021GXLH-Z-028)the Youth InnovationTeam of Shaanxi Universities and the Fundamental Research Funds for the Central Universities.
文摘Bioprinting has been widely investigated for tissue engineering and regenerative medicine applications.However,it is still difficult to reconstruct the complex native cell arrangement due to the limited printing resolution of conventional bioprinting techniques such as extrusion-and inkjet-based printing.Recently,an electrohydrodynamic(EHD)bioprinting strategy was reported for the precise deposition of well-organized cell-laden constructs with microscale filament size,whereas few studies have been devoted to developing bioinks that can be applied for EHD bioprinting and simultaneously support cell spreading.This study describes functionalized alginate-based bioinks for microscale EHD bioprinting using peptide grafting and fibrin incorporation,which leads to high cell viability(>90%)and cell spreading.The printed filaments can be further refined to as small as 30μm by incorporating polyoxyethylene and remained stable over one week when exposed to an aqueous environment.By utilizing the presented alginate-based bioinks,layer-specific cell alignment along the printing struts could be observed inside the EHD-printed microscale filaments,which allows fabricating living constructs with cell-scale filament resolution for guided cellular orientation.
基金the Faculty of Pharmaceutical Sci-ences,Burapha University for financial support(grant num-bers 9/2558)
文摘In this study, we developed a polymeric nanofiber patch(PNP) for topical disease treatment using electrohydrodynamic atomization(EHDA). The nanofibers were prepared using various concentrations of polyvinyl alcohol(PVA) and tamarind seed gum and loaded with clindamycin HCl as a model drug. The precursor polymer solutions were sprayed using the EHDA technique; the EHDA processing parameters were optimized to obtain blank and drug-loaded PNPs. The skin adherence, translucence, and ventilation properties of the prepared PNPs indicated that they are appropriate for topical application. The conductivity of the polymer solution increased with increasing PVA and clindamycin concentrations, and increasing the PVA concentration enhanced the solution viscosity. Based on scanning electron microscopy analysis, the PVA concentration had a pronounced effect on the morphology of the sprayed product. Nanofibers were fabricated successfully when the solution PVA concentration was 10%, 13%, or 15%(w/v). The applied voltage significantly affected the diameters of the prepared nanofibers, and the minimum nanofiber diameter was 163.86 nm. Differential scanning calorimetry and X-ray diffraction analyses indicated that the modeldrug was dispersed in PVA in an amorphous form. The PNP prepared with a PVA:gum ratio of 9:1 absorbed water better than the PVA-only PNP and the PNP with a PVA:gum ratio of 9.5:0.5. Moreover, the PNPs loaded with clindamycin at concentrations of 1%–3% prohibited the growth of Staphylococcus aureus more effectively than clindamycin gel, a commercially available product.
基金supported in part by Berkeley Sensor and Actuator Center&Berkeley Biomolecular Nanotechnology Centerfinancially supported by the National Key Research and Design Program of China(No.2018YFA0703000)+3 种基金the National Natural Science Foundation of China(Nos.51675412,51422508)the Key Research Project of Shaanxi Province(No.2020GXLH-Y-021)The Youth Innovation Team of Shaanxi Universities and the Fundamental Research Funds for the Central Universitiesfinancial support from China Scholarship Council。
文摘Electrohydrodynamic(EHD)3D printing of ca rbon-based materials in the form of orderly networks can have various applications.In this work,microscale carbon/nickel(C-Ni)composite electrodes with controlled porosity have been utilized in electrochemical energy storage of supercapacitors.Polyacrylonitrile(PAN)was chosen as the basic material for its excellent carbonization performance and EHD printing property.Nickel nitrate(Ni(NO_(3))_(2))was incorporated to form Ni nanoparticles which can improve the conductivity and the capacitance performance of the electrode.Well-aligned PAN-Ni(NO_(3))_(2) composite structures have been fabricated and carbonized as C-Ni electrodes with the typical diameter of 9.2±2.1μm.The porosity of the as-prepared C-Ni electrode can be controlled during the EHD process.Electrochemical results show the C-Ni network electrode has achieved a 2.3 times higher areal specific capacitance and 1.7 times higher mass specific capacitance than those of a spin-coated electrode.As such,this process offers a facile and scalable strategy for the fabrication of orderly carbon-based conductive structures for various applications such as energy storage devices and printable electronics.
文摘The electroosmotic flow of a micropolar fluid in a microchannel bounded by two parallel porous plates undergoing periodic vibration is studied. The equations for conservation of linear and angular momentums and Gauss's law of charge distribution are solved within the framework of the Debye-Hückel approximation. The fluid velocity and microrotation are assumed to depend linearly on the Reynolds number. The study shows that the amplitude of microrotation is highly sensitive to the changes in the magnitude of the suction velocity and the width of the microchannel. An increase in the micropolar parameter gives rise to a decrease in the amplitude of microrotation. Numerical estimates reveal that the microrotation of the suspended microelements in blood also plays an important role in controlling the electro-osmotically actuated flow dynamics in microbio-fluidic devices.