期刊文献+
共找到565篇文章
< 1 2 29 >
每页显示 20 50 100
Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries
1
作者 Shanshan Lv Jingwen Wang +7 位作者 Yuanming Zhai Yu Chen Jiarui Yang Zhiwei Zhu Rui Peng Xuewei Fu Wei Yang Yu Wang 《Nano-Micro Letters》 2026年第2期288-305,共18页
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving... Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs. 展开更多
关键词 Charged nanofillers Nanocomposite polymer electrolyte Dynamic lithium ion interface solid ion-conductors solidstate lithium-metal battery
在线阅读 下载PDF
Distinct electron-transfer processes at polymer electrolyte/electrode interfaces:Solvation-mediated versus proton-coupled pathways
2
作者 Kaiyue Zhao Xiaoting Chen Bingjun Xu 《Journal of Energy Chemistry》 2025年第8期693-701,共9页
Electron transfer processes at polymer electrolyte/electrode interfaces play a central role in modern electrochemical devices of energy conversion,however,current understanding of electron transfers through electroche... Electron transfer processes at polymer electrolyte/electrode interfaces play a central role in modern electrochemical devices of energy conversion,however,current understanding of electron transfers through electrochemical interfaces was established exclusively based on the studies of liquid/solid electrochemical interfaces.Thus,similarities and differences of liquid and polymer electrolyte/electrode interfaces need to be mapped out to guide the design of device level electrochemical interfaces.In this work,we employ the sulfonate adsorption/desorption as a probe reaction to understand the electron-transfer steps in polymer and liquid electrolytes.Through cyclic voltametric investigations on the well-define single-crystal Pd_(ML)Pt(111)electrode,we demonstrate that the oxidative adsorption and reductive desorption of sulfonates at the polymer electrolyte/electrode interface are chemically distinct from those in liquid electrolytes,with the former occurring mostly via the proton-coupled pathway while the latter proceeding mainly through the solvation-mediated pathway.Importantly,the sulfonate adsorption/desorption behaviors of alkylsulfonates become increasingly similar to those in Nafion with longer alkyl chains,suggesting that the interfacial hydrophobicity and solvation environment conferred by the perfluorinated polymer play a decisive role in the electron-transfer mechanism.Results reported in this study highlight the mechanistic distinctions between electron-transfer processes at electrochemical interfaces involving polymer and liquid electrolytes,and provide a framework for understanding electron-transfer processes at polymer electrolyte/electrode interfaces. 展开更多
关键词 Polymer electrolyte/electrode interface ELECTROCATALYSIS Single-crystal electrochemistry Electron transfer
在线阅读 下载PDF
Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries 被引量:6
3
作者 Lei-ying Wang Li-fan Wang +4 位作者 Rui Wang Rui Xu Chun Zhan Woochul Yang Gui-cheng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1584-1602,共19页
In the past few years,the all-solid lithium battery has attracted worldwide attentions,the ionic conductivity of some all-solid lithium-ion batteries has reached 10^(-3)-10^(-2) S/cm,indicating that the transport of l... In the past few years,the all-solid lithium battery has attracted worldwide attentions,the ionic conductivity of some all-solid lithium-ion batteries has reached 10^(-3)-10^(-2) S/cm,indicating that the transport of lithium ions in solid electrolytes is no longer a major problem.However,some interface issues become research hotspots.Examples of these interfacial issues include the electrochemical decomposition reaction at the electrode-electrolyte interface;the low effective contact area between the solid electrolyte and the electrode etc.In order to solve the issues,researchers have pursued many different approaches.The addition of a buffer layer between the electrode and the solid electrolyte has been at the center of this endeavor.In this review paper,we provide a systematic summarization of the problems on the electrode-solid electrolyte interface and detailed reflection on the latest works of buffer-based therapies,and the review will end with a personal perspective on the improvement of buffer-based therapies. 展开更多
关键词 solid-state lithium-ion batteries solid electrolyte buffer layer interface
在线阅读 下载PDF
Stabilized Conductive Agent/Sulfide Solid Electrolyte Interface via a Halide Solid Electrolyte Coating for All-Solid-State Batteries
4
作者 Seungwoo Lee Hyungjun Lee +10 位作者 Seungmin Han Yeseung Lee Seho Sun Jaeik Kim Joonhyeok Park Seunggun Choi Jiwoon Kim Jinhee Jung Jinwoo Jeong Taeseup Song Ungyu Paik 《Carbon Energy》 2025年第8期48-59,共12页
All-solid-state batteries(ASSBs)have garnered significant interest as the next-generation in battery technology,praised for their superior safety and high energy density.However,a conductive agent accelerates the unde... All-solid-state batteries(ASSBs)have garnered significant interest as the next-generation in battery technology,praised for their superior safety and high energy density.However,a conductive agent accelerates the undesirable side reactions of sulfide-based solid electrolytes(SEs),resulting in poor electrochemical properties with increased interfacial resistance.Here,we propose a wet chemical method rationally designed to achieve a conformal coating of lithium-indium chloride(Li_(3)InCl_(6))onto vapor-grown carbon fibers(VGCFs)as conductive agents.First,with the advantage of the Li_(3)InCl_(6) protective layer,use of VGCF@Li_(3)InCl_(6) leads to enhanced interfacial stability and improved electrochemical properties,including stable cycle performance.These results indicate that the Li_(3)InCl_(6) protective layer suppresses the unwanted reaction between Li_(6)PS_(5)Cl(LPSCl)and VGCF.Second,VGCF@Li_(3)InCl_(6) effectively promotes polytetrafluoroethylene(PTFE)fibrillization,leading to a homogeneous electrode microstructure.The uniform distribution of the cathode active material(CAM)in the electrode results in reduced charge-transfer resistance(R_(ct))and enhanced Li-ion kinetics.As a result,a full cell with the LiNi_(x)Mn_(y)Co_(z)O_(2)(NCM)/VGCF@Li_(3)InCl_(6) electrode shows an areal capacity of 7.7mAhcm^(−2) at 0.05 C and long-term cycle stability of 77.9%over 400 cycles at 0.2 C.This study offers a strategy for utilizing stable carbon-based conductive agents in sulfide-based ASSBs to enhance their electrochemical performance. 展开更多
关键词 all-solid-state batteries conductive agent halide solid electrolyte protection layer solvent-free electrode sulfide solid electrode
在线阅读 下载PDF
Temperature tailored robust solid electrolyte interface for improved high-areal-capacity prelithiated silicon-carbon anode
5
作者 Yanyan Lu Xinrong Lv +3 位作者 Jiacheng Shao Cunman Zhang Liming Jin Junsheng Zheng 《Journal of Energy Chemistry》 2025年第10期76-88,共13页
Silicon is considered one of the most promising candidates for incorporation into carbon-based anodes in lithium-ion batteries(LIBs)due to its high specific capacity.However,the significant volume changes during charg... Silicon is considered one of the most promising candidates for incorporation into carbon-based anodes in lithium-ion batteries(LIBs)due to its high specific capacity.However,the significant volume changes during charge and discharge cycles lead to repeated reconstruction of the solid electrolyte interface(SEI)film and continuous loss of active lithium.Pre-lithiation method is regarded as a highly attractive approach for effectively compensating for active lithium loss during the charge and discharge cycles of LIBs.Constructing a stable SEI film is particularly crucial in the pre-lithiation process.In this study,we developed a direct contact pre-lithiation(DC-Pr)method to create a temperature-tailored robust SEI film interface on silicon-carbon(Si@C)electrodes.By investigating the morphology,structure,and composition of the SEI formed on Si@C electrodes at different pre-lithiation temperatures(50,25,0,and-25℃),we demonstrated that controlling the lithiation temperature to regulate the migration rate of lithium ions within the Si@C electrode yields a lithiated Si@C anode(25-Pr-Si@C)at 25℃ with a continuous,uniform SEI film(~3.65 nm)enriched with Li_(2)O-LiF,which exhibits synergistic effects.Importantly,the initial Coulombic efficiency(ICE)of 25-Pr-Si@C significantly improved from 85.4% in the unlithiated Si@C electrode(Blank-Si@C)to 106.1%.Additionally,the full cell configuration using a high areal loading of lithiated Si@C(~5.5 mA h cm^(-2))as the anode and NCM811 as the cathode(NCM811||25-Pr-Si@C)demonstrated superior cycling performance,maintaining 69.4% of capacity retention and achieving a Coulombic efficiency of over 99.7% after 150 cycles(0.5 C).Therefore,this simple and efficient experimental design provides a high-performance,controllable,and scalable pre-lithiation method for LIBs,paving the way for the commercialization of LIBs utilizing pre-lithiation techniques. 展开更多
关键词 Pre-lithiation Silicon-carbon solid electrolyte interface film Lithium-ion batteries
在线阅读 下载PDF
Targeting stability:Recent progress and perspectives on both anode and cathode interface of halide solid electrolytes
6
作者 Nan Zhang Xing-Qi Chen +5 位作者 Xiaoting Lin Peng-Fei Wang Zong-Lin Liu Jie Shu Ping He Ting-Feng Yi 《Journal of Energy Chemistry》 2025年第10期497-517,共21页
Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.None... Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.Nonetheless,stability issues are a key barrier to their practical application.In past reports,the analysis of halide electrolyte stability and its enhancement methods lacked relevance,which limited the design and optimization of halide solid electrolytes.This review focus on stability issues from a chemical,electrochemical,and interfacial point of view,with particular emphasis on the interaction of halide SSEs with anode and cathode interfaces.By focusing on innovative strategies to address the stability issue,this paper aims to further deepen the understanding and development of halide all-solid-state batteries by proposing to focus research efforts on improving their stability in order to address their inherent challenges and match higher voltage cathodes,paving the way for their wider application in the next generation of energy storage technologies. 展开更多
关键词 Halide solid electrolytes Ion transport mechanism Chemical stability Electrochemical stability interface stability
在线阅读 下载PDF
Interface compatibility between sulfide solid electrolytes and Ni-rich oxide cathode materials:Factors,modification,perspectives
7
作者 Tianwen Yang Haijuan Pei +3 位作者 Haijian Lv Shijie Lu Qi Liu Daobin Mu 《Journal of Energy Chemistry》 2025年第2期233-262,I0006,共31页
All-solid-state batteries(ASSBs)assembled with sulfide solid electrolytes(SSEs)and nickel(Ni)-rich oxide cathode materials are expected to achieve high energy density and safety,representing potential candidates for t... All-solid-state batteries(ASSBs)assembled with sulfide solid electrolytes(SSEs)and nickel(Ni)-rich oxide cathode materials are expected to achieve high energy density and safety,representing potential candidates for the next-generation energy storage systems.However,interfacial issues between SSEs and Nirich oxide cathode materials,attributed to space charge layer,interfacial side reactions,and mechanical contact failure,significantly restrict the performances of ASSBs.The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication.Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode,this article systematically discusses how cathode active materials(CAMs),electrolytes,conductive additives,binders,and electrode fabrication impact the interface compatibility.In addition,the strategies for the compatibility modification are reviewed.Furthermore,the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed.This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries. 展开更多
关键词 Sulfide solid electrolyte Ni-rich oxide cathode interface compatibility Influencing factors All-solid-state batteries
在线阅读 下载PDF
Investigation of polysulfone film on high-performance anode with stabilized electrolyte/electrode interface for lithium batteries 被引量:2
8
作者 Yuyan Ma Chen Dong +5 位作者 Qiuli Yang Yuxin Yin Xiaoping Bai Shuying Zhen Cheng Fan Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期49-55,共7页
Lithium metal has been considered to be the most promising anode material for the new generation of energy-storage system.However,challenges still stand in protecting lithium metal from spontaneous reactions with elec... Lithium metal has been considered to be the most promising anode material for the new generation of energy-storage system.However,challenges still stand in protecting lithium metal from spontaneous reactions with electrolytes and preventing the dendritic propagation,both of which would lead to undesirable decrease in Coulombic efficiency.Polysulfone(PSf)membrane with high rigidity and free-volume cavities of approximately 0.3 nm was employed to provide a stable interface on the surface of anodic electrode.The isotropic channels were constructed by the interconnected and uniformly distributed free volumes in the polymer matrix,and were expected to be swelled by solvent molecules and anions of lithium salt and to allow Li+ions to pass through onto the electrode surface.As a result,dendrite-free morphology of deposited lithium was observed.The stabilized interface arose from the PSf film was verified by the promoted performances of Cu|Li cells and steady voltage polarization of Li|Li cells.The full cell with PSf coated anode exhibited excellent cyclability(85%capacity retention rate over 400 cycles at 1C)and an outstanding rate capability(117 m Ah g-1 at 5C).The beneficial performances were further verified by the EIS results.This work provides a new strategic idea to settle the dendritic problems of Li metal anodes. 展开更多
关键词 Lithium metal electrolyte/electrode interface Dendrite-free POLYSULFONE Free volume
在线阅读 下载PDF
Mechanistically Novel Frontal-Inspired In Situ Photopolymerization:An Efficient Electrode|Electrolyte Interface Engineering Method for High Energy Lithium Metal Polymer Batteries 被引量:2
9
作者 Ishamol Shaji Diddo Diddens +1 位作者 Martin Winter Jijeesh Ravi Nair 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期273-282,共10页
The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention ha... The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention has been given to the eco-friendly and rapid ultraviolet(UV)-induced in situ photopolymerization process to prepare solid-state polymer electrolytes.In this respect,an innovative method is proposed here to overcome the challenges of UV-induced photopolymerization(UV-curing)in the zones where UV-light cannot penetrate,especially in LMPBs where thick electrodes are used.The proposed frontal-inspired photopolymerization(FIPP)process is a diverged frontal-based technique that uses two classes(dual)of initiators to improve the slow reaction kinetics of allyl-based monomers/oligomers by at least 50%compared with the conventional UV-curing process.The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations.Indeed,the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV-irradiation step as the case with the classical frontal photopolymerization technique.Besides,the FIPP-based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes.Furthermore,the LMPB cells fabricated using the in situ-FIPP process with high mass loading LiFePO_(4)electrodes(5.2 mg cm^(-2))demonstrate higher rate capability,and a 50%increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large-scale solid-state battery production. 展开更多
关键词 cathodelelectrolyte interface frontal-inspired photopolymerization in situ polymerization lithium metal polymer battery solid polymer electrolyte
在线阅读 下载PDF
A facile finger-paint physical modification for bilateral electrode/electrolyte interface towards a stable aqueous Zn battery 被引量:1
10
作者 Hang Yang Duo Chen +6 位作者 Yicheng Tan Hao Xu Li Li Yiming Zhang Chenglin Miao Guangshe Li Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期101-109,I0004,共10页
Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint met... Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint method is proposed to enable quick physical modification of glass-fiber separator without complicated chemical technology to modulate EEI of bilateral electrodes for aqueous zinc-ion batteries(ZIBs).An elaborate biochar derived from Aspergillus Niger is exploited as the modification agent of EEI,in which the multi-functional groups assist to accelerate Zn^(2+)desolvation and create a hydrophobic environment to homogenize the deposition behavior of Zn anode.Importantly,the finger-paint interface on separator can effectively protect cathodes from abnormal capacity fluctuation and/or rapid attenuation induced by H_(2)O molecular on the interface,which is demonstrated in modified MnO_(2),V_(2)O_(5),and KMn HCF-based cells.The as-proposed finger-paint method opens a new idea of bilateral interface engineering to facilitate the access to the practical application of the stable zinc electrochemistry. 展开更多
关键词 Aqueous Zinc battery electrode/electrolyte interface interface modification MnO_(2) V_(2)O_(5) KMnHCF
在线阅读 下载PDF
Recent Advances in Nanoengineering of Electrode-Electrolyte Interfaces to Realize High-Performance Li-Ion Batteries
11
作者 Na-Yeong Kim Ilgyu Kim +5 位作者 Behnoosh Bornamehr Volker Presser Hiroyuki Ueda Ho-Jin Lee Jun Young Cheong Ji-Won Jung 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期1-13,共13页
A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and developme... A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries. 展开更多
关键词 battery electrode electrolyte interface LITHIUM NANOENGINEERING
在线阅读 下载PDF
Understanding Electrolytes and Interface Chemistry for Sustainable Nonaqueous Metal-CO_(2)Batteries
12
作者 Bijiao He Yunnian Ge +4 位作者 Fang Zhang Huajun Tian Yan Xin Yong Lei Yang Yang 《Nano-Micro Letters》 2025年第12期74-107,共34页
Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recove... Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries. 展开更多
关键词 Nonaqueous metal-CO_(2)battery electrolytes and interface chemistry Mechanism interface engineering solid electrolyte interface chemistry
在线阅读 下载PDF
Unlocking the stable interface in aqueous zinc-ion battery with multifunctional xylose-based electrolyte additives
13
作者 Xiaoqin Li Jian Xiang +9 位作者 Lu Qiu Xiaohan Chen Yinkun Zhao Yujue Wang Qu Yue Taotao Gao Wenlong Liu Dan Xiao Zhaoyu Jin Panpan Li 《Journal of Energy Chemistry》 2025年第1期770-778,共9页
The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict betwe... The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict between mass transfer and electrochemical kinetics. In this study, we propose the use of a multifunctional electrolyte additive based on the xylose(Xylo) molecule to address these issues by modulating the solvation structure and electrode/electrolyte interface, thereby stabilizing the Zn anode. The introduction of the additive alters the solvation structure, creating steric hindrance that impedes charge transfer and then reduces electrochemical kinetics. Furthermore, in-situ analyses demonstrate that the reconstructed electrode/electrolyte interface facilitates stable and rapid Zn^(2+)ion migration and suppresses corrosion and hydrogen evolution reactions. As a result, symmetric cells incorporating the Xylo additive exhibit significantly enhanced reversibility during the Zn plating/stripping process, with an impressively long lifespan of up to 1986 h, compared to cells using pure ZnSO4electrolyte. When combined with a polyaniline cathode, the full cells demonstrate improved capacity and long-term cyclic stability. This work offers an effective direction for improving the stability of Zn anode via electrolyte design, as well as highperformance AZIBs. 展开更多
关键词 Aqueous Zn-ion battery electrolyte additive Solvation structure electrode/electrolyte interface Zn anode
在线阅读 下载PDF
Phosphonated ionomer modulates electrochemical interfaces in high temperature polymer electrolyte membrane fuel cells
14
作者 Yangyang Hu Zhangxun Xia +3 位作者 Congrong Yang Jicai Huang Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 2025年第4期850-857,共8页
Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte los... Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte loss.These issues significantly impede the performance and durability of HT-PEMFCs,thereby limiting their potential for further application.In this study,poly(2,3,5,6-tetrafluorostylene-4-phosphonic acid)(PWN)with intrinsic proton conduction ability was employed as catalyst layer binder to reveal the impacts of the ionomer's molecular structure on mass transport within the catalyst layer.Our findings demonstrated that increasing the phosphorylation degree of PWN could enhance both pore formation at the catalyst layer and electrode acidophilic capability while improving proton conduction ability and reducing cells'internal resistance.However,adverse effects included increased local oxygen transport resistance and decreased catalyst utilization resulting from electrode acidophilic capability.This research offers valuable insights for the relationships between micro-scale molecule structure,mesoscale electrode architecture,and membrane electrode assembly design in HT-PEMFCs. 展开更多
关键词 High temperature polymer electrolyte membrane fuel cells Phosphonated ionomers Oxygen transport resistance Electrochemical interface Porous electrode
在线阅读 下载PDF
A critical review on composite solid electrolytes for lithium batteries:Design strategies and interface engineering 被引量:5
15
作者 Tianqi Yang Cheng Wang +7 位作者 Wenkui Zhang Yang Xia Hui Huang Yongping Gan Xinping He Xinhui Xia Xinyong Tao Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期189-209,共21页
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren... The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs. 展开更多
关键词 Inorganic solid electrolytes Polymer solid electrolytes Composite solid electrolytes interface engineering
在线阅读 下载PDF
Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries 被引量:8
16
作者 Chengxin Yu Yu Li +6 位作者 Haixia Ren Ji Qian Shuo Wang Xin Feng Mingquan Liu Ying Bai Chuan Wu 《Carbon Energy》 SCIE CAS CSCD 2023年第1期181-193,共13页
Developing effective strategies to improve the initial Coulombic efficiency(ICE)and cycling stability of hard carbon(HC)anodes for sodium-ion batteries is the key to promoting the commercial application of HC.In this ... Developing effective strategies to improve the initial Coulombic efficiency(ICE)and cycling stability of hard carbon(HC)anodes for sodium-ion batteries is the key to promoting the commercial application of HC.In this paper,homotype heterojunctions are designed on HC to induce the generation of stable solid electrolyte interfaces,which can effectively increase the ICE of HC from 64.7%to 81.1%.The results show that using a simple surface engineering strategy to construct a homotypic amorphous Al_(2)O_(3) layer on the HC could shield the active sites,and further inhibit electrolyte decomposition and side effects occurrence.Particularly,due to the suppression of continuous decomposition of NaPF 6 in ester-based electrolytes,the accumulation of NaF could be reduced,leading to the formation of thinner and denser solid electrolyte interface films and a decrease in the interface resistance.The HC anode can not only improve the ICE but elevate its sodium storage performance based on this homotype heterojunction composed of HC and Al_(2)O_(3).The optimized HC anode exhibits an outstanding reversible capacity of 321.5mAhg^(−1) at 50mAg^(−1).The cycling stability is also improved effectively,and the capacity retention rate is 86.9%after 2000 cycles at 1Ag^(−1) while that of the untreated HC is only 52.6%.More importantly,the improved sodium storage behaviors are explained by electrochemical kinetic analysis. 展开更多
关键词 hard carbon anodes homotype heterojunctions sodium-ion batteries solid electrolyte interface surface engineering
在线阅读 下载PDF
Solid Electrolyte Interface in Zn-Based Battery Systems 被引量:7
17
作者 Xinyu Wang Xiaomin Li +1 位作者 Huiqing Fan Longtao Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期286-309,共24页
Due to its high theoretical capacity(820 mAh g^(−1)),low standard electrode potential(−0.76 V vs.SHE),excellent stability in aqueous solutions,low cost,environmental friendliness and intrinsically high safety,zinc(Zn)... Due to its high theoretical capacity(820 mAh g^(−1)),low standard electrode potential(−0.76 V vs.SHE),excellent stability in aqueous solutions,low cost,environmental friendliness and intrinsically high safety,zinc(Zn)-based batteries have attracted much attention in developing new energy storage devices.In Zn battery system,the battery performance is significantly affected by the solid electrolyte interface(SEI),which is controlled by electrode and electrolyte,and attracts dendrite growth,electrochemical stability window range,metallic Zn anode corrosion and passivation,and electrolyte mutations.Therefore,the design of SEI is decisive for the overall performance of Zn battery systems.This paper summarizes the formation mechanism,the types and characteristics,and the characterization techniques associated with SEI.Meanwhile,we analyze the influence of SEI on battery performance,and put forward the design strategies of SEI.Finally,the future research of SEI in Zn battery system is prospected to seize the nature of SEI,improve the battery performance and promote the large-scale application. 展开更多
关键词 solid electrolyte interface Zn-based battery Solvated structure Artificial SEI In situ SEI
在线阅读 下载PDF
Electrode-compatible fluorine-free multifunctional additive regulating solid electrolyte interphase and solvation structure for high-performance lithium-ion batteries 被引量:3
18
作者 Qing-Song Liu Yi-Zhou Quan +4 位作者 Mei-Chen Liu Guo-Rui Zhu Xiu-Li Wang Gang Wu Yu-Zhong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期239-246,I0008,共9页
The rapid development and widespread application of lithium-ion batteries(LIBs) have increased demand for high-safety and high-performance LIBs. Accordingly, various additives have been used in commercial liquid elect... The rapid development and widespread application of lithium-ion batteries(LIBs) have increased demand for high-safety and high-performance LIBs. Accordingly, various additives have been used in commercial liquid electrolytes to severally adjust the solvation structure of lithium ions, control the components of solid electrolyte interphase, or reduce flammability. While it is highly desirable to develop low-cost multifunctional electrolyte additives integrally that address both safety and performance on LIBs, significant challenges remain. Herein, a novel phosphorus-containing organic small molecule, bis(2-methoxyethyl) methylphosphonate(BMOP), was rationally designed to serve as a fluorine-free and multifunctional additive in commercial electrolytes. This novel electrolyte additive is low-toxicity,high-efficiency, low-cost, and electrode-compatible, which shows the significant improvement to both electrochemical performance and fire safety for LIBs through regulating the electrolyte solvation structure, constructing the stable electrode-electrolyte interphase, and suppressing the electrolyte combustion. This work provides a new avenue for developing safer and high-performance LIBs. 展开更多
关键词 Multifunctional additives electrode compatibility solid electrolyte interface Solvation structure Lithium-ion batteries
在线阅读 下载PDF
Progress and perspective of interface design in garnet electrolyte-based all-solid-state batteries 被引量:3
19
作者 Junrun Feng Zhonghui Gao +2 位作者 Lin Sheng Zhangxiang Hao Feng R.Wang 《Carbon Energy》 CAS 2021年第3期385-409,共25页
Inorganic solid-state electrolytes(SSEs)are nonflammable alternatives to the commercial liquid-phase electrolytes.This enables the use of lithium(Li)metal as an anode,providing high-energy density and improved stabili... Inorganic solid-state electrolytes(SSEs)are nonflammable alternatives to the commercial liquid-phase electrolytes.This enables the use of lithium(Li)metal as an anode,providing high-energy density and improved stability by avoiding unwanted liquid-phase chemical reactions.Among the different types of SSEs,the garnet-type electrolytes witness a rapid development and are considered as one of the top candidates to pair with Li metal due to their high ionic conductivity,thermal,and electrochemical stability.However,the large resistances at the interface between garnet-type electrolytes and cathode/anode are the major bottlenecks for delivering desirable electrochemical performances of all-solid-state batteries(SSBs).The electrolyte/anode interface also suffers from metallic dendrite formation,leading to rapid performance degradation.This is a fundamental material challenge due to the poor contact and wettability between garnet-type electrolytes with electrode materials.Here,we summarize and analyze the recent contributions in mitigating such materials challenges at the interface.Strategies used to address these challenges are divided into different categories with regard to their working principles.On one hand,progress has been made in the anode/garnet interface,such as the successful application of Li-alloy anode and different artificial interlayers,significantly improving interfacial performance.On the other hand,the desired cathode/garnet interface is still hard to reach due to the complex chemical and physical structure at the cathode.The common methods used are nanostructured cathode host and sintering additives for increasing the contact area.On the basis of this information,we present our views on the remaining challenges and future research of electrode/garnet interface.This review not only motivates the need for further understanding of the fundamentals,stability,and modifications of the garnet/electrode interfaces but also provides guidelines for the future design of the interface for SSB. 展开更多
关键词 all-solid-state batteries garnet electrolytes garnet/electrode interface solid-solid interface
在线阅读 下载PDF
In situ formed LiF-Li_(3)N interface layer enables ultra-stable sulfide electrolyte-based all-solid-state lithium batteries 被引量:2
20
作者 Ming Wu Mengqi Li +5 位作者 Yuming Jin Xinshuang Chang Xiaolei Zhao Zhi Gu Gaozhan Liu Xiayin Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期272-278,共7页
Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid ele... Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid electrolytes in all-solid-state batteries with lithium anode is restricted by the side reactions at lithium/electrolytes interfaces and the growth of lithium dendrite caused by nonuniform lithium deposition.Herein,a homogeneous LiF-Li_(3)N composite protective layer is in situ formed via a manipulated reaction of pentafluorobenzamide with Li metal.The LiF-Li_(3)N layer with both high interfacial energy and interfacial adhesion energy can synergistically suppress side reactions and inhibit the growth of lithium dendrite,achieving uniform deposition of lithium.The critical current densities of Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl are increased to 3.25 and 1.25 mA cm^(-2)with Li@LiF-Li_(3)N layer,which are almost triple and twice as those of Li-symmetric cells in the absence of protection layer,respectively.Moreover,the Li@LiF-Li_(3)N/Li10GeP2S12/Li@LiF-Li_(3)N cell can stably cycle for 9000 h at 0.1 mA cm^(-2)under 0.1 mA h cm^(-2),and Li@LiF-Li_(3)N/Li_(6)PS_(5)Cl/Li@LiF-Li_(3)N cell achieves stable Li plating/stripping for 8000 h at 0.1 mA cm^(-2)under10 m A h cm^(-2).The improved dynamic stability of lithium plating/stripping in Li@LiF-Li_(3)N/Li_(10)GeP_(2)S_(12)or Li_(6)PS_(5)Cl interfaces is proved by three-electrode cells.As a result,LiCoO_(2)/electrolytes/Li@LiF-Li_(3)N batteries with Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl exhibit remarkable cycling stability of 500 cycles with capacity retentions of 93.5%and 89.2%at 1 C,respectively. 展开更多
关键词 LiF-Li_(3)N Sulfide solid electrolytes interface modification High interface energy All-solid-state batteries
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部