The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode mate...The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si–Fe–Mn nanomaterial alloy(Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high(~2 mg cm^(-2)) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes.In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering(electrode densification from 0.39 to 0.48 g cm^(-3)) showed enhanced cycling stability with a high capacity retention of ~100% over 100 cycles.展开更多
As the key component of electrochemical energy storage devices, an electrode with superior ions transport pores is the important premise for high electrochemical performance. In this paper, we developed a unique solut...As the key component of electrochemical energy storage devices, an electrode with superior ions transport pores is the important premise for high electrochemical performance. In this paper, we developed a unique solution process to prepare freestanding TiO_2/graphene hydrogel electrode with tunable density and porous structures. By incorporating room temperature ionic liquids(RTILs), even upon drying, the non-volatile RTILs that remained in the gel film would preserve the efficient ion transport channels and prevent the electrode from closely stacking, to develop dense yet porous structures. As a result, the dense TiO_2/graphene gel film as an electrode for lithium ion battery displayed a good gravimetric electrochemical performance and more importantly a high volumetric performance.展开更多
Solid-state lithium-metal batteries(SLMBs)have been regarded as one of the most promising next-generation devices because of their potential high safety,high energy density,and simple packing procedure.However,the pra...Solid-state lithium-metal batteries(SLMBs)have been regarded as one of the most promising next-generation devices because of their potential high safety,high energy density,and simple packing procedure.However,the practical applications of SLMBs are restricted by a series of static and dynamic interfacial issues,including poor interfacial contact,(electro-)chemical incompatibility,dynamic Li dendrite penetration,etc.In recent years,considerable attempts have been made to obtain mechanistic insight into interfacial failures and to develop possible strategies towards excellent interfacial properties for SLMBs.The static and dynamic failure mechanisms at interfaces between solid electrolytes(SEs)and electrodes are comprehensively summarized,and design strategies involving interfacial modification,electrode/SE engineering,and the monolithic construction of SLMBs are discussed in detail.Finally,possible research methodologies such as theoretical calcu-lations,advanced characterization techniques,and versatile design strategies are provided to tackle these interfacial problems.展开更多
It is anticipated that alkaline water electrolysis(AWE)technology will assume a significant role in the future energy sector,facilitating the integration of renewable energy and hydrogen production.Regrettably,the eff...It is anticipated that alkaline water electrolysis(AWE)technology will assume a significant role in the future energy sector,facilitating the integration of renewable energy and hydrogen production.Regrettably,the effi-ciency of AWE is not yet optimal.In particular,the inefficiency caused by bubbles at increased current density is often overlooked,necessitating a detailed understanding of the intricate relationship between bubble evolution and electrolytic reactions.This paper presents a comprehensive review of the fundamental theory and recent research on bubbles,and outlines the primary challenges and research directions for bubble dynamics in AWE.First,the theory of bubble nucleation,growth,and detachment is reviewed and summarized.Subsequently,the impact of bubbles on the diverse processes occurring during the electrolysis reaction is meticulously delineated and examined.The following section presents a thorough compilation and categorization of the methods employed to remove bubbles,with a detailed analysis of the strategies deployed to mitigate the impact of gas bubble traffic.Additionally,an in-depth exploration of the research methodology employed at each stage of the bubble evolution process is provided.Finally,the review concludes with a summary and outlook on the oppor-tunities and challenges associated with studying bubble dynamics in AWE,offering insights into innovative av-enues for efficient electrolytic hydrogen production.展开更多
Resistive switching random access memories(RRAM)have been considered to be promising for future information technology with applications for non-volatile memory,logic circuits and neuromorphic computing.Key performanc...Resistive switching random access memories(RRAM)have been considered to be promising for future information technology with applications for non-volatile memory,logic circuits and neuromorphic computing.Key performances of those resistive devices are approaching the realistic levels for production.In this paper,we review the progress of valence change type memories,including relevant work reported by our group.Both electrode engineering and in-situ transmission electron microscopy(TEM)high-resolution observation have been implemented to reveal the influence of migration of oxygen anions/vacancies on the resistive switching effect.The understanding of resistive memory mechanism is significantly important for device applications.展开更多
Electrocatalytic water splitting driven by renewable energy input to produce clean hydrogen(H_(2))has been widely considered a prospective approach for a future hydrogen-based society.However,the development of indust...Electrocatalytic water splitting driven by renewable energy input to produce clean hydrogen(H_(2))has been widely considered a prospective approach for a future hydrogen-based society.However,the development of industrial alkaline water electrolyzers is hindered due to their unfavorable thermodynamics with high overpotential for delivering the whole process,caused by sluggish kinetics involving four-electron transfer.Further exploration of water electrolysis with low energy consumption and high efficiency is urgently required to meet the ever-growing energy storage and portfolio demands.This review emphasizes the strategies proposed thus far to pursue high-efficiency water electrolysis systems,including from the aspects of electro-catalysts(from monofunctional to bifunctional),electrode engineering(from powdery to self-supported),energy sources(from nonrenewable to renewable),electrolytes(from pure to hybrid),and cell configurations(from integrated to decoupled).Critical appraisals of the pivotal electrochemistry are highlighted to address the challenges in elevating the overall efficiency of water splitting.Finally,valuable insights for the future development directions and bottlenecks of advanced,sustainable,and high-efficiency water splitting systems are outlined.展开更多
Metal-sulfur battery,which provides considerable high energy density at a low cost,is an appealing energy-storage technology for future long-range electric vehicles and large-scale power grids.One major challenge of m...Metal-sulfur battery,which provides considerable high energy density at a low cost,is an appealing energy-storage technology for future long-range electric vehicles and large-scale power grids.One major challenge of metal-sulfur batteries is their long-term cycling stability,which is significantly deteriorated by the generation of various soluble polysulfide intermediates and the shuttling of these intermediates through the separator.Furthermore,the intrinsically sluggish reaction kinetics associated with the poor conductivity of sulfur/sulfides family causes a large polarization in cycle behavior,which further deteriorates the electrode rechargeability.To solve these problems,the research communities have spent a great amount of effort on designing smart cathodes to delicately tailor the physiochemical interaction between the sulfur hosts and polysulfides.Here,we summarize the key progress in the development of two-dimensional(2D)host materials showing advantageous tunability of their physiochemical properties through coordination control methods such as defect engineering,heteroatom doping,heterostructure,and phase and interface engineering.Accordingly,we discuss the mechanisms of polysulfide anchoring and catalyzing upon specific coordination environment in conjunction with possible structure-property relationships and theoretical analysis.This review will provide prospective fundamental guidance for future sulfur host design and beyond.展开更多
基金financial support from Joint School of Nanoscience and Nanoengineering,USA
文摘The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si–Fe–Mn nanomaterial alloy(Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high(~2 mg cm^(-2)) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes.In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering(electrode densification from 0.39 to 0.48 g cm^(-3)) showed enhanced cycling stability with a high capacity retention of ~100% over 100 cycles.
基金supported by grants from the National Natural Science Foundation of China(21303251)Innovation Program of Shanghai Municipal Education Commission(16SG17)the Shenzhen Science and Technology Foundation(JCYJ201419122040621)
文摘As the key component of electrochemical energy storage devices, an electrode with superior ions transport pores is the important premise for high electrochemical performance. In this paper, we developed a unique solution process to prepare freestanding TiO_2/graphene hydrogel electrode with tunable density and porous structures. By incorporating room temperature ionic liquids(RTILs), even upon drying, the non-volatile RTILs that remained in the gel film would preserve the efficient ion transport channels and prevent the electrode from closely stacking, to develop dense yet porous structures. As a result, the dense TiO_2/graphene gel film as an electrode for lithium ion battery displayed a good gravimetric electrochemical performance and more importantly a high volumetric performance.
基金supported by the National Key R&D Program of China(2022YFB2402600)the National Natural Science Foundation of China(11904379,51972329,52061160484,52125105,52188101)+1 种基金the Shenzhen Science and Technology Planning Project(JCYJ20210324101203009,JCYJ2020010911562492,JCYJ20190807171803813)the Guangdong Basic and Applied Basic Research Foundation(2022A1515011493,2019A1515011902,2019TX05L389,2020B0301030002).
文摘Solid-state lithium-metal batteries(SLMBs)have been regarded as one of the most promising next-generation devices because of their potential high safety,high energy density,and simple packing procedure.However,the practical applications of SLMBs are restricted by a series of static and dynamic interfacial issues,including poor interfacial contact,(electro-)chemical incompatibility,dynamic Li dendrite penetration,etc.In recent years,considerable attempts have been made to obtain mechanistic insight into interfacial failures and to develop possible strategies towards excellent interfacial properties for SLMBs.The static and dynamic failure mechanisms at interfaces between solid electrolytes(SEs)and electrodes are comprehensively summarized,and design strategies involving interfacial modification,electrode/SE engineering,and the monolithic construction of SLMBs are discussed in detail.Finally,possible research methodologies such as theoretical calcu-lations,advanced characterization techniques,and versatile design strategies are provided to tackle these interfacial problems.
基金support from National Natural Science Foundation of China,Grant Nos.52241701 and 52307249Shanghai Pujiang Program,Nos.22PJ1413100Fundamental Research Funds for the Central Universities at Tongji University,Nos.PA22120220426.
文摘It is anticipated that alkaline water electrolysis(AWE)technology will assume a significant role in the future energy sector,facilitating the integration of renewable energy and hydrogen production.Regrettably,the effi-ciency of AWE is not yet optimal.In particular,the inefficiency caused by bubbles at increased current density is often overlooked,necessitating a detailed understanding of the intricate relationship between bubble evolution and electrolytic reactions.This paper presents a comprehensive review of the fundamental theory and recent research on bubbles,and outlines the primary challenges and research directions for bubble dynamics in AWE.First,the theory of bubble nucleation,growth,and detachment is reviewed and summarized.Subsequently,the impact of bubbles on the diverse processes occurring during the electrolysis reaction is meticulously delineated and examined.The following section presents a thorough compilation and categorization of the methods employed to remove bubbles,with a detailed analysis of the strategies deployed to mitigate the impact of gas bubble traffic.Additionally,an in-depth exploration of the research methodology employed at each stage of the bubble evolution process is provided.Finally,the review concludes with a summary and outlook on the oppor-tunities and challenges associated with studying bubble dynamics in AWE,offering insights into innovative av-enues for efficient electrolytic hydrogen production.
文摘Resistive switching random access memories(RRAM)have been considered to be promising for future information technology with applications for non-volatile memory,logic circuits and neuromorphic computing.Key performances of those resistive devices are approaching the realistic levels for production.In this paper,we review the progress of valence change type memories,including relevant work reported by our group.Both electrode engineering and in-situ transmission electron microscopy(TEM)high-resolution observation have been implemented to reveal the influence of migration of oxygen anions/vacancies on the resistive switching effect.The understanding of resistive memory mechanism is significantly important for device applications.
基金supported by the National Natural Science Foundation of China(22179065,21875118,22111530112)the Tianjin Research Innovation Project for Postgraduate Students(2020YJSB143)the Ph.D.Candidate Research Innovation Fund of NKU School of Materials Science and Engineering.
文摘Electrocatalytic water splitting driven by renewable energy input to produce clean hydrogen(H_(2))has been widely considered a prospective approach for a future hydrogen-based society.However,the development of industrial alkaline water electrolyzers is hindered due to their unfavorable thermodynamics with high overpotential for delivering the whole process,caused by sluggish kinetics involving four-electron transfer.Further exploration of water electrolysis with low energy consumption and high efficiency is urgently required to meet the ever-growing energy storage and portfolio demands.This review emphasizes the strategies proposed thus far to pursue high-efficiency water electrolysis systems,including from the aspects of electro-catalysts(from monofunctional to bifunctional),electrode engineering(from powdery to self-supported),energy sources(from nonrenewable to renewable),electrolytes(from pure to hybrid),and cell configurations(from integrated to decoupled).Critical appraisals of the pivotal electrochemistry are highlighted to address the challenges in elevating the overall efficiency of water splitting.Finally,valuable insights for the future development directions and bottlenecks of advanced,sustainable,and high-efficiency water splitting systems are outlined.
基金supported by the National Key Research and Development Program of China(2017YFB0405600)the Natural Science Foundation of Tianjin(18JCYBJC85700 and 18JCZDJC30500)+3 种基金the National Natural Science Foundation of China(62001326,61274113,and 61404091)the Open Project of State Key Laboratory of Functional Materials for Information(SKL202007)the Science and Technology Planning Project of Tianjin(20ZYQCGX00070)the Innovation and Entrepreneurship Project for College Students(202110060049 and 202110060153).
基金support from the Science and Technology Bureau of Huangpu District(No.2020GH03)the Innovation and Technology-Fund Partnership Research Programme(No.PRP/055/21FX)+2 种基金Innovation and Technology Fund-Gong Hong Kong Technology Cooperation Funding Scheme(No.GHP/047/20GD)Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices(GDSTC No.2019B121205001)Kong Branch of National Precious Metals Material Engineering Research Center.
文摘Metal-sulfur battery,which provides considerable high energy density at a low cost,is an appealing energy-storage technology for future long-range electric vehicles and large-scale power grids.One major challenge of metal-sulfur batteries is their long-term cycling stability,which is significantly deteriorated by the generation of various soluble polysulfide intermediates and the shuttling of these intermediates through the separator.Furthermore,the intrinsically sluggish reaction kinetics associated with the poor conductivity of sulfur/sulfides family causes a large polarization in cycle behavior,which further deteriorates the electrode rechargeability.To solve these problems,the research communities have spent a great amount of effort on designing smart cathodes to delicately tailor the physiochemical interaction between the sulfur hosts and polysulfides.Here,we summarize the key progress in the development of two-dimensional(2D)host materials showing advantageous tunability of their physiochemical properties through coordination control methods such as defect engineering,heteroatom doping,heterostructure,and phase and interface engineering.Accordingly,we discuss the mechanisms of polysulfide anchoring and catalyzing upon specific coordination environment in conjunction with possible structure-property relationships and theoretical analysis.This review will provide prospective fundamental guidance for future sulfur host design and beyond.