期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Enhanced removal of methylisothiazolinone from high-salt wastewater by Sn-Sb-Ce/GAC particle electrode: Reactive species and efficiency
1
作者 Feng Xu Yuqiu Liu +7 位作者 Shujiao Xu Jinxin Zhang Lei Liao Jiguang Guo Weiyu Jiang Hongzhe Dong Qinxue Wen Zhiqiang Chen 《Chinese Chemical Letters》 2025年第10期551-557,共7页
Advanced oxidation processes are promising for degradation of the highly chemical stability and refractory methylisothiazolinone(MIT) bactericides in relevant industrial wastewater.In order to assemble a low cost and ... Advanced oxidation processes are promising for degradation of the highly chemical stability and refractory methylisothiazolinone(MIT) bactericides in relevant industrial wastewater.In order to assemble a low cost and high performance electrochemical oxidation system for wastewater treatment,granular active carbon(GAC) was decorated by doping Ce,Sn,Sb to synthesize Sn-Sb-Ce/GAC using sol-gel method as particle electrode filled into a three-dimensional(3D) electrochemical reactor.Scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS) and X-ray diffraction(XRD) experiments revealed that the Sn-Sb-Ce/GAC particle electrode crystal particles were compact and uniform,and the surface structure was improved.The ten cyclic experiments indicated that the Sn-Sb-Ce/GAC particle electrode had high stability and low dissolution of the loaded active substance.The degradation mechanism of MIT was studied under the optimal working conditions of 3D electrode system with GAC of 5 g/L,current density of 20 mA/cm^(2),initial pH 5,electrolyte concentration of Na_(2)SO_(4)0.02 mol/L and reaction time of 120 min.The indirect electrochemical degradation of MIT was dominated by active substance pathway that active chlorine rather than free radicals(·OH) played the main role.Comparing with conventional two-dimensional(2D) electrode system,the 3D electrochemical system has larger active electrode area,higher treatment efficiency and lower energy consumption than the former.The 3D electrochemical system could remove 96.5% of MIT from the actual high-salt reverse osmosis concentrate wastewater in 30 min.It has a certain removal effect on UV_(254)in wastewater,but has a better removal effect on fluorescent substances.This study proposed a new strategy to develop transition metal and rare earth metal particle electrodes using carbon-based materials for high efficient electrocatalytic oxidation in the electrochemical treatment system. 展开更多
关键词 Electrocatalytic degradation Three-dimensional electrochemical system Modified granular activated carbon electrode Methylisothiazolinone(MIT) Reactive species EFFICIENCY
原文传递
Comparative Study of MnO_(2)and Fe_(2)O_(3)Composites on Toona ciliata-Derived Carbon for Sustainable Supercapacitor Applications
2
作者 Dibyashree Shrestha 《Journal of Environmental & Earth Sciences》 2025年第7期240-259,共20页
Unmanaged wood waste,particularly in countries like Nepal,presents serious environmental concerns due to open burning and improper disposal,leading to carbon emissions,air pollution and land degradation.This study int... Unmanaged wood waste,particularly in countries like Nepal,presents serious environmental concerns due to open burning and improper disposal,leading to carbon emissions,air pollution and land degradation.This study introduces an environmentally sustainable strategy to upcycle Toona ciliata wood scrap—an abundant and underutilized lignocellulosic biomass—into high performance carbon electrodes for green energy storage applications.Activated carbon(TCWAC)was synthesized via single-step pyrolytic carbonization followed by phosphoric acid activation,yielding a material with high specific surface area,hierarchical porosity,and excellent electrical conductivity.Electrochemical measurements using a three-electrode configuration in 6 M KOH revealed optimized potential windows of -1.0 to -0.2 V(TCWAC),-1.2 to 0 V(TCWAC-Mn),and -1.15 to -0.4 V(TCWAC-Fe).TCWAC exhibited a specific capacitance of 156.3 Fg^(-1)at 1 Ag^(-1),with an energy density of 3.5 Whkg^(-1),and 80.2% capacity retention after 1000 charge-discharge cycles.Composites with MnO_(2)and Fe_(2)O_(3)were also evaluated.TWAC-Mn delivered 489.4 Fg^(-1),25.1 Whkg^(-1),and 99.1% retention,whereas,TWAC-Fe achieved 321.3 Fg^(-1),6.3 Whkg^(-1),and 90.3% retention.The superior performance of MnO_(2)is attributed to its multiple oxidation states,facilitating reversible faradaic redox and enhanced pseudocapacitance.This work offers the first direct,systematic comparison of MnO_(2)and Fe_(2)O_(3)composites on a common biomass-carbon matrix under identical synthesis and testing conditions.The finding provides mechanistic insight into charge storage behaviour and demonstrate a scalable route for converting biomass waste into sustainable electrode materials,contributing to cleaner energy solutions and improved biomass valorization. 展开更多
关键词 Toona ciliata Wood Scrap Activated Carbon electrodes SUPERCAPACITOR MnO_(2)Composites Fe_(2)O_(3)Composites Sustainable Energy Storage
在线阅读 下载PDF
Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors 被引量:6
3
作者 Yuwei Zhang Zhansheng Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期706-715,共10页
Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithiumion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evo... Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithiumion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles(Li Mn_2 O_4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling. 展开更多
关键词 Li-ion battery Active particle of electrodes Central crack and growth Extended finite element method Crack surface diffusion
在线阅读 下载PDF
Electrocatalytic Activity of Ni/C Electrodes Prepared by Metal Vapor Synthesis For Hydrogen Evolution in Alkaline Solution 被引量:1
4
作者 Shi Hua WU Chang Ying ZHU and Wei Ping HUANG(Department of Chemistry, Nankai University, Tianjin 300071) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第5期435-436,共2页
The metal vapor synthesis (MVS) methed was used to prepare activatedcarbon supported nickel electrode. The electrocatalytic activity of the electrode forhydrogen evolution reaction(HGR) in alkaline solution was studie... The metal vapor synthesis (MVS) methed was used to prepare activatedcarbon supported nickel electrode. The electrocatalytic activity of the electrode forhydrogen evolution reaction(HGR) in alkaline solution was studied. Cathodicpolarization curves showed the electrocatalytic activity of Ni/C electrode prepared byMVS method was higher than that of the one prepared by conventional method. 展开更多
关键词 ACTIVITY Electrocatalytic Activity of Ni/C electrodes Prepared by Metal Vapor Synthesis For Hydrogen Evolution in Alkaline Solution NI
在线阅读 下载PDF
EFFECT OF STRUCTURE OF FUNCTIONAL POLYMER ACTIVE MATERIALS ON PROPERTIES OF GADOLINIUM ION SELECTIVE ELECTRODE
5
作者 车吉泰 闫美兰 张万喜 《Journal of Rare Earths》 SCIE EI CAS CSCD 1990年第3期189-193,共5页
In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- ti... In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes. 展开更多
关键词 HDPE EFFECT OF STRUCTURE OF FUNCTIONAL POLYMER ACTIVE MATERIALS ON PROPERTIES OF GADOLINIUM ION SELECTIVE electrode
在线阅读 下载PDF
Effects of preparation temperature on electrochemical performance of nitrogen-enriched carbons 被引量:1
6
作者 吴春 王先友 +3 位作者 赵青蓝 高娇 白艳松 舒洪波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3541-3550,共10页
The activated nitrogen-enriched novel carbons (NENCs) were prepared by direct carbonization using polyaniline coating activated mesocarbon microbead composites as the precursor. Herein the influences of the carbonizat... The activated nitrogen-enriched novel carbons (NENCs) were prepared by direct carbonization using polyaniline coating activated mesocarbon microbead composites as the precursor. Herein the influences of the carbonization temperature on the structure and morphology of the NENCs samples were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N2 adsorption/desorption isotherm at 77 K. The electrochemical properties of the supercapacitors were characterized by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), cycle life, leakage current and self-discharge measurements in 6 mol/L KOH solution. The results demonstrate that the NENC samples carbonized at 600 °C show the highest specific capacitance of 385 F/g at the current density of 1 A/g and the lowest ESR value (only 0.93?). Furthermore, the capacity retention ratio of the NENCs-600 supercapacitor is 92.8 % over 2500 cycles. 展开更多
关键词 carbonization temperatures nitrogen-enriched novel carbon material electrode active materials SUPERCAPACITOR
在线阅读 下载PDF
Electrochemical Performance of Nickel Hydroxide/Activated Carbon Supercapacitors Using a Modified Polyvinyl Alcohol Based Alkaline Polymer Electrolyte 被引量:4
7
作者 孙紫红 袁安保 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第1期150-155,共6页
Polyvinyl alcohol (PVA)-sodium polyacrylate (PAAS)-KOH-H2O alkaline polymer electrolyte film with high ionic conductivity was prepared by a solution-casting method. Polymer Ni(OH)2/activated carbon (AC) hybrid... Polyvinyl alcohol (PVA)-sodium polyacrylate (PAAS)-KOH-H2O alkaline polymer electrolyte film with high ionic conductivity was prepared by a solution-casting method. Polymer Ni(OH)2/activated carbon (AC) hybrid supercapacitors with different electrode active material mass ratios (positive to negative) were fabricated using this alkaline polymer electrolyte, nickel hydroxide positive electrodes, and AC negative electrodes. Galvanostatic charge/ discharge and electrochemical impedance spectroscopy (EIS) methods were used to study the electrochemical performance of the capacitors, such as charge/discharge specific capacitance, rate charge/discharge ability, and charge/discharge cyclic stability. Experimental results showed that with the decreasing of active material mass ratio m(Ni(OH)2)/m(AC), the charge/discharge specific capacitance increases, but the rate charge/discharge ability and the charge/discharge cyclic stability decrease. 展开更多
关键词 PVA based alkaline polymer electrolyte Ni(OH)2/AC supercapacitor electrode active material mass ratio electrochemical performance
在线阅读 下载PDF
Synthesis of α-Mo_2C by Carburization of α-MoO_3 Nanowires and Its Electrocatalytic Activity towards Tri-iodide Reduction for Dye-Sensitized Solar Cells 被引量:3
8
作者 J.Theerthagiri R.A.Senthil +2 位作者 M.H.Buraidah J.Madhavan A.K.Arof 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1339-1344,共6页
Nanowire-shaped α-Mo O3 was synthesized on a large scale by hydrothermal route.Nanocrystalline α-Mo2 C phase was obtained by the carburization of α-Mo O3 nanowires with urea as a carbon source precursor.The phase p... Nanowire-shaped α-Mo O3 was synthesized on a large scale by hydrothermal route.Nanocrystalline α-Mo2 C phase was obtained by the carburization of α-Mo O3 nanowires with urea as a carbon source precursor.The phase purity and crystalline size of the synthesized materials were ascertained by using powder X-ray diffraction.The shape and morphology of synthesized materials were characterized by field-emission scanning electron microscopy(FE-SEM) and high resolution transmission electron microscopy(HR-TEM).The electrocatalytic activity of α-Mo2 C for I-/I3^-redox couple was investigated by the cyclic voltammetry.The synthesized α-Mo2 C was subsequently applied as counter electrode in dye-sensitized solar cells to replace the expensive platinum. 展开更多
关键词 Counter electrode Dye-sensitized solar cells Electrocatalytic activity Molybdenum carbide Molybdenum oxide
原文传递
Gas free oxidation of NaCN for presodiating and stabilizing the anodic host of sodium-ion capacitors
9
作者 Xuexue Pan Agnieszka Chojnacka François Béguin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期33-40,I0002,共9页
Sodium-ion capacitors(NICs)trigger considerable attention due to their higher specific energy than electrical double-layer capacitors(EDLCs)at comparable specific power.However,the presodiation process of the anodic h... Sodium-ion capacitors(NICs)trigger considerable attention due to their higher specific energy than electrical double-layer capacitors(EDLCs)at comparable specific power.However,the presodiation process of the anodic host is extremely crucial for the construction of high-performance NICs.Herein,a positive EDL electrode containing activated carbon(AC)mixed with sodium cyanide(NaCN)as a sacrificial material was electrochemically oxidized to presodiate a Sn_(4)P_(3) anodic host buffered by hard carbon(HC).The oxidation of CN-occurred ca.2.9 V vs.Na/Na+and finished by a short region of linearly increasing potential with a total capacity close to the theoretical value of 547 mAh g^(-1).The operando electrochemical mass spectrometry(EMS)analysis of the atmosphere in the cell together with the internal pressure measurements realized during the galvanostatic oxidation of a YP80F-NaCN electrode demonstrate that the process occurs without any gas evolution.A precursor cell of an NIC was constructed in a pouch with YP80FNaCN and HC/Sn_(4)P_(3) electrodes.After the oxidative sodium transfer from NaCN to HC/Sn_(4)P_(3),the realized YP80F//Nax(HC/Sn_(4)P_(3))NIC demonstrated a discharge capacitance retention higher than 80%for 8900 cycles in the voltage range from 2.0 to 3.8 V.The infrared analysis of the anode obtained by the herein described transfer process detected polycyanogen,which stabilizes the electrode structure during cycling,and thereof is at the origin of the enhanced life span of the NIC. 展开更多
关键词 Na-ion capacitors Activated carbon EDL electrode Sacrificial NaCN HC/Sn_(4)P_(3)anodic host Polycyanogen Anode stabilization
在线阅读 下载PDF
A new thiol-sulfur click chemistry for lithium-organosulfide batteries
10
作者 Rong Zou Wenwu Liu Fen Ran 《The Innovation》 2025年第2期42-48,41,共8页
Click chemistry is a rapid,reliable,and powerful function and a highly selective organic reaction that facilitates the efficient synthesis of various molecules by joining small units.This approach has found widespread... Click chemistry is a rapid,reliable,and powerful function and a highly selective organic reaction that facilitates the efficient synthesis of various molecules by joining small units.This approach has found widespread applications in fields such as drug development,chemical synthesis,and molecular biology.In recent years,the reaction of alkali-catalyzed polymerization of thiol and sulfur has been employed to prepare various sulfur-containing polymers,which are applied as electrochemical active electrode materials in the pursuit of good performance.In this study,it is surprising to find that the reaction mechanism exhibits characteristics of both the alkali-catalyzed sulfhydryl Micheal addition reaction and thiol-epoxy click chemistry;for the first time,thiol-sulfur click chemistry is defined in detail,providing a comprehensive description of its underlying scientific principles.The introduction of this new reaction pathway holds significant potential for advancing research and the development of sulfur-containing polymers.Based on this novel click chemistry,a new sulfur-containing polymer,polydivinylthioether hexasulfide,has been designed and successfully applied as a cathode material in lithium-organosulfide batteries.This material demonstrates excellent electrochemical performance,achieving an initial capacity that reaches 790.5 mAh g−1(82.6%of theoretical capacity),and in a long-term cycle test,the capacity decay rate is only 0.063%after 1,000 cycles. 展开更多
关键词 electrochemical active electrode mater thiol sulfur click chemistry molecular biologyin lithium organosulfide batteries synthesis various molecules organic reaction click chemistry joining small unitsthis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部