期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Facile top-down fabrication of integrated amorphous NiFe-based electrocatalytic electrodes for high current and long-life oxygen evolution
1
作者 Weiwei Zhang Qingyun lv +5 位作者 Long Hou Jiantao Wang Zhipeng Long Xionggang Lu Xing Yu Xi Li 《Journal of Materials Science & Technology》 2025年第8期11-21,共11页
Developing an industrially relevant electrode with high catalytic activity,stability,and tunable composition/size for large-scale water electrolysis is a significant challenge.We have created an integrated elec-trode(... Developing an industrially relevant electrode with high catalytic activity,stability,and tunable composition/size for large-scale water electrolysis is a significant challenge.We have created an integrated elec-trode(NFM30-N)for the oxygen evolution reaction(OER)using a facile top-down approach that combines arc melting with dealloying-oxidation.Due to the dealloying-oxidation effect,the asderived porous amorphous M-O,M-OH,and M-OOH(M=Ni,Fe)nanocones cover the basic NiFeMn alloy.This integrated design enables NFM30-N to exhibit outstanding OER performance at high current densities,requiring low overpotentials of only 282 and 323 mV to achieve large current densities of 100 and 500 mA cm^(-2),respectively.It also displays a small Tafel slope of 44.1 mV dec^(-1) and remarkable stability for over 100 h at 100 and 500 mA cm^(-2).When used as an anode,a two-electrode electrolyzer cell with NFM30-N at 500 mA cm^(-2) only requires a cell voltage of 1.619 V and exhibits excellent stability,with almost no performance degradation after continuous chronopotentiometry test for each 100 h at 500 and 100 mA cm^(-2).This exceptional OER electrocatalytic performance is attributed to the integrated structure providing high electrical conductivity and stability,the presence of numerous active sites due to dealloying and the amorphous structure,and the promotion of the OER process by M-O,M-OH,and M-OOH species.This work offers a novel idea for fabricating integrated,industrially relevant electrocatalytic electrodes through traditional metallurgy combined with dealloying-oxidation. 展开更多
关键词 Arc melting Dealloying-oxidation Integration Amorphous NiFe-based electrocatalytic electrode Industrial-scale oxygen evolution reaction(OER)
原文传递
Towards a new avenue for rapid synthesis of electrocatalytic electrodes via laser-induced hydrothermal reaction for water splitting
2
作者 Yang Sha Menghui Zhu +6 位作者 Kun Huang Yang Zhang Francis Moissinac Zhizhou Zhang Dongxu Cheng Paul Mativenga Zhu Liu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期340-351,共12页
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ... Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production. 展开更多
关键词 electrocatalytic electrode laser-induced hydrothermal reaction NiFe layered double hydroxides hydrogen evolution reaction water splitting energy consumption production rate
在线阅读 下载PDF
Electrocatalytic Activity of Ni/C Electrodes Prepared by Metal Vapor Synthesis For Hydrogen Evolution in Alkaline Solution 被引量:1
3
作者 Shi Hua WU Chang Ying ZHU and Wei Ping HUANG(Department of Chemistry, Nankai University, Tianjin 300071) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第5期435-436,共2页
The metal vapor synthesis (MVS) methed was used to prepare activatedcarbon supported nickel electrode. The electrocatalytic activity of the electrode forhydrogen evolution reaction(HGR) in alkaline solution was studie... The metal vapor synthesis (MVS) methed was used to prepare activatedcarbon supported nickel electrode. The electrocatalytic activity of the electrode forhydrogen evolution reaction(HGR) in alkaline solution was studied. Cathodicpolarization curves showed the electrocatalytic activity of Ni/C electrode prepared byMVS method was higher than that of the one prepared by conventional method. 展开更多
关键词 ACTIVITY electrocatalytic Activity of Ni/C electrodes Prepared by Metal Vapor Synthesis For Hydrogen Evolution in Alkaline Solution NI
在线阅读 下载PDF
Plastic supported platinum modified nickel electrode and its high electrocatalytic activity for sodium borohydride electrooxidation 被引量:1
4
作者 Bin Wang Dongming Zhang +4 位作者 Ke Ye Kui Cheng Dianxue Cao Guiling Wang Xiaoli Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期497-502,共6页
A novel plastic/multi-walled carbon nanotube(MWNTs)-nickel(Ni)-platinum(Pt) electrode(PMNP) is prepared by chemical-reducing Pt onto the surface of Ni film covered plastic/MWNTs(PM) substrate. The MWNTs are ... A novel plastic/multi-walled carbon nanotube(MWNTs)-nickel(Ni)-platinum(Pt) electrode(PMNP) is prepared by chemical-reducing Pt onto the surface of Ni film covered plastic/MWNTs(PM) substrate. The MWNTs are adhered by a piece of commercial double faced adhesive tape on the surface of plastic paper and the Ni film is prepared by a simple electrodeposition method. The morphology and phase structure of the PMNP electrode are characterized by scanning electron microscopy,transmission electron microscope and X-ray diffractometer. The catalytic activity of the PMNP electrode for Na BH4 electrooxidation is investigated by means of cyclic voltammetry and chronoamperometry. The catalyst combines tightly with the plastic paper and exhibits a good stability. MWNTs serve as both conductive material and hydrogen storage material and the Ni film and Pt are employed as electrochemical catalysts. The PMNP electrode exhibits a high electrocatalytic performance and the oxidation current density reaches to 10.76 A/(mg·cm) in 0.1 mol/dm3 Na BH4at0 V,which is much higher than those in the previous reports. The using of waste plastic reduces the discarding of white pollution and consumption of metal resources. 展开更多
关键词 Plastic Platinum modified nickel electrode Chemical-reducing High electrocatalytic performance Reduce white pollution
在线阅读 下载PDF
Bifunctional Mn-doped CoSe_(2) nanonetworks electrode for hybrid alkali/acid electrolytic H_(2) generation and glycerol upgrading 被引量:1
5
作者 Linfeng Fan Yaxin Ji +5 位作者 Genxiang Wang Zhifang Zhang Luocai Yi Kai Chen Xi Liu Zhenhai Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期424-431,I0012,共9页
Electrolytic water splitting,as a promising route to hydrogen(H_(2))production,is still confronted with the sluggish anodic oxygen evolution reaction(OER)and its less value-added O2 production.Herein,we report a bifun... Electrolytic water splitting,as a promising route to hydrogen(H_(2))production,is still confronted with the sluggish anodic oxygen evolution reaction(OER)and its less value-added O2 production.Herein,we report a bifunctional electrode fabricated by in situ growth of Mn-doped CoSe_(2)nanonetworks on carbon fiber cloth(Mn-CoSe_(2)/CFC),which shows attractive electrocatalytic properties toward glycerol oxidation reaction(GOR)in alkali and hydrogen evolution reaction(HER)in acid.A flow alkali/acid hybrid electrolytic cell(fA/A-hEC)was then developed by coupling anodic GOR with cathodic HER with the Mn-CoSe_(2)/CFC bifunctional electrode.Such fA/A-hEC enables a rather low voltage of 0.54 V to achieve 10 mA cm^(-2),and maintain long-term electrolysis stability over 300-h operation at 100 mA cm^(-2)with Faraday efficiencies of over 99%for H_(2)and 90%for formate production.The designed bifunctional electrode in such innovative fA/A-hEC device provides insightful guidance for coupling energy-efficient hydrogen production with biomass upgradation. 展开更多
关键词 Mn-doped CoSe_(2)nanonetworks Glycerol upgrading electrooxidation Hydrogen production Bifunctional electrocatalytic electrode Hybrid flow alkali/acid electrolyzer
在线阅读 下载PDF
Synthesis of α-Mo_2C by Carburization of α-MoO_3 Nanowires and Its Electrocatalytic Activity towards Tri-iodide Reduction for Dye-Sensitized Solar Cells 被引量:3
6
作者 J.Theerthagiri R.A.Senthil +2 位作者 M.H.Buraidah J.Madhavan A.K.Arof 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1339-1344,共6页
Nanowire-shaped α-Mo O3 was synthesized on a large scale by hydrothermal route.Nanocrystalline α-Mo2 C phase was obtained by the carburization of α-Mo O3 nanowires with urea as a carbon source precursor.The phase p... Nanowire-shaped α-Mo O3 was synthesized on a large scale by hydrothermal route.Nanocrystalline α-Mo2 C phase was obtained by the carburization of α-Mo O3 nanowires with urea as a carbon source precursor.The phase purity and crystalline size of the synthesized materials were ascertained by using powder X-ray diffraction.The shape and morphology of synthesized materials were characterized by field-emission scanning electron microscopy(FE-SEM) and high resolution transmission electron microscopy(HR-TEM).The electrocatalytic activity of α-Mo2 C for I-/I3^-redox couple was investigated by the cyclic voltammetry.The synthesized α-Mo2 C was subsequently applied as counter electrode in dye-sensitized solar cells to replace the expensive platinum. 展开更多
关键词 Counter electrode Dye-sensitized solar cells electrocatalytic activity Molybdenum carbide Molybdenum oxide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部