Nano-fibrous polyaniline was synthesized on stainless steel electrode in 0.5mol·L-1 H2SO4 solution by pulse galvanostatic method. The effects of synthetic conditions of pulse galvanostatic method on the electroac...Nano-fibrous polyaniline was synthesized on stainless steel electrode in 0.5mol·L-1 H2SO4 solution by pulse galvanostatic method. The effects of synthetic conditions of pulse galvanostatic method on the electroactivity of polyaniline were investigated. The results show that the electroactivity of polyaniline film strongly depends on the synthetic conditions, such as the ratio of “on time” to “off time”(ton/toff), frequency, monomer concentration, temperature and mean current density. Different electroactivities of polyaniline are caused by different morphologies of polyaniline. The nano-fibrous polyaniline has higher electroactivity than polyaniline with other morphologies. Under the following conditions: mean current density of pulse galvanostatic method 13mA·cm-2, ton/toff 1, frequency 200Hz, monomer concentration 0.3mol·L-1 and temperature 20℃, nano-fibrous polyaniline film with the highest electroactivity can be obtained.展开更多
Metal-organic frameworks(MOFs)have emerged as promising materials in the realm of electrocatalysis due to their high surface area,tunable porosity,and versatile chemical functionality.However,their practical applicati...Metal-organic frameworks(MOFs)have emerged as promising materials in the realm of electrocatalysis due to their high surface area,tunable porosity,and versatile chemical functionality.However,their practical application has been hampered by inherent limitations such as low electrical conductivity and a limited number of active metal sites.Researchers addressed these challenges through various strategies,including enhancing conductivity by incorporating conductive materials and metal nanoparticles,modifying the structure and composition of MOFs by replacing metal nodes and functionalizing linkers,and preparing MOFs catalysts through thermal processes such as decarburization and con-version into metal oxides,phosphides(MPs),and sulfides(MSs).This review provided a comprehensive summary of the strategies that were employed to enhance the electroactivity of MOFs for improved electrocatalytic performance in recent years.It also explored future directions and potential innovations in the design and synthesis of MOF‐based electrocatalysts,offering valuable insights for advancing their application in sustainable energy technologies.展开更多
The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical ...The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration.Inspired by bioelectricity,electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix,thereby accelerating bone regeneration.With ongoing advances in biomaterials and energy-harvesting techniques,electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue.In this review,we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Next,we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering.Finally,we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.展开更多
The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high effic...The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies.展开更多
We developed a strategy involving an electroactive biofiltration dynamic membrane(EBDM)for wastewater treatment and membrane fouling mitigation.This approach utilizes a cathode potential within an anaerobic dynamic me...We developed a strategy involving an electroactive biofiltration dynamic membrane(EBDM)for wastewater treatment and membrane fouling mitigation.This approach utilizes a cathode potential within an anaerobic dynamic membrane bioreactor to establish a growth equilibrium electroactive fouling layer.Over a 240 day operation period,the EBDM exhibited outstanding performance,characterized by an ultralow fouling rate(transmembrane pressure<2.5 kPa),superior effluent quality(chemical oxygen demand(COD)removal>93%and turbidity 2 nephelometric turbidity units(NTU)),and a 7.2%increase in methane(CH4)productivity.Morphological analysis revealed that the EBDM acted as a biofilter consisting of a structured,interconnected,multilevel dynamic membrane system with orderly clogging.In the EBDM system,the balanced-growth fouling layers presented fewer biofoulants and looser secondary protein structures.Furthermore,the applied electric field modified the physicochemical properties of the biomass,leading to a decrease in fouling potential.Quartz crystal microbalance with dissipation monitoring analysis indicated that growth equilibrium promoted a looser fouling layer with a lower adsorption mass than did the denser,viscoelastic fouling layer observed in the control reactor.Metagenomic sequencing further demonstrated that continuous electrical stimulation encouraged the development of an electroactive fouling layer with enhanced microbial metabolic functionality on the EBDM.This approach selectively modifies metabolic pathways and increases the degradation of foulants.The EBDM strategy successfully established an ordered-clogging,step-filtered,and balanced-growth electroactive fouling layer,achieving a synergistic effect in reducing membrane fouling,enhancing effluent quality,and improving CH_(4)productivity.展开更多
Vanadium oxide hydrate V3O7..H2O (H2V3O8) nanobelts have been synthesized by hydrothermal approach using V2O5 as vanadium source and phenolphthalein as structure-directing agent. Techniques X-ray powder diffraction (X...Vanadium oxide hydrate V3O7..H2O (H2V3O8) nanobelts have been synthesized by hydrothermal approach using V2O5 as vanadium source and phenolphthalein as structure-directing agent. Techniques X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy and nitrogen adsorption/desorption isotherms have been used to characterize the structure, morphology and composition of the nanobelts. The V3O7. H2O nanobelts are up to several hundreds of nanometers, the widths and thicknesses are 90 and 40 nm, respectively. The electroactivity of the nanobelts has been investigated. The as-synthesized material is promising for chemical and energy-related applications such as catalysts, electrochemical device and it may be applied in rechargeable lithium-ion batteries.展开更多
Electrochemical biosensor holds great promise in the biomedical area due to its enhanced specificity, sensitivity, label-free nature and cost effectiveness for rapid point-of-care detection of diseases at bedside. In ...Electrochemical biosensor holds great promise in the biomedical area due to its enhanced specificity, sensitivity, label-free nature and cost effectiveness for rapid point-of-care detection of diseases at bedside. In this review, we are focusing on the working principle of electrochemical biosensor and how it can be employed in detecting biomarkers of fatal diseases like cancer, AIDS, hepatitis and cardiovascular diseases. Recent advances in the development of implantable biosensors and exploration of nanomaterials in fabrication of electrodes with increasing the sensitivity of biosensor for quick and easy detection of biomolecules have been elucidated in detail. Electrochemical-based detection of heavy metal ions which cause harmful effect on human health has been discussed. Key challenges associated with the electrochemical sensor and its future perspectives are also addressed.展开更多
Global climate change,growing population,and environmental pollution underscore the need for a greater focus on providing advanced water treatment technologies.Although electrochemical basedprocesses are becoming prom...Global climate change,growing population,and environmental pollution underscore the need for a greater focus on providing advanced water treatment technologies.Although electrochemical basedprocesses are becoming promising solutions,they still face challenges owing to mass transport and upscaling which hinder the exploitation of this technology.Electrode design and reactor configuration are key factors for achieving operational improvements.The electroactive membrane has proven to be a breakthrough technology integrating electrochemistry and membrane separation with an enhanced mass transport by convection.In this review article,we discuss recent progress in environmental applications of electroactive membranes with particular focus on those composed of carbon nanotubes(CNT)due to their intriguing physicochemical prope rties.Their applications in degradation of refractory contaminants,detoxification and sequestration of toxic heavy metal ions,and membrane fouling alleviations are systematically reviewed.We then discuss the existing limitations and opportunities for future research.The development of advanced electroactive systems depends on interdisciplinary collaborations in the areas of materials,electrochemistry,membrane development,and environmental sciences.展开更多
Electroactive shape memory composites were synthesized using polybutadiene epoxy (PBEP) and bisphenol A type cyanate ester (BACE) filled with different contents of carbon black (CB). Dynamic mechanical analysis ...Electroactive shape memory composites were synthesized using polybutadiene epoxy (PBEP) and bisphenol A type cyanate ester (BACE) filled with different contents of carbon black (CB). Dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), electrical performance and electroactive shape memory behavior were systematically investigated. It is found that the volume resistivity decreased due to excellent electrical conductivity of CB, in turn resulting in good electroactive shape memory properties. The content of CB and applied voltage had significant influence on electroactive shape memory effect of developed BACE/PBEP/CB composites. Shape recovery can be observed within a few seconds with the CB content of 5 wt% and voltage of 60 V. Shape recovery time decreased with increasing content of CB and voltage. The infrared thermometer revealed that the temperature rises above the glass transition temperature faster with the increase of voltage and the decrease of resistance.展开更多
In the past decades,ion conductive polymers and elastomers have drawn worldwide attention for their advanced functions in batteries,electroactive soft robotics,and sensors.Stretchable ionic elastomers with dispersed s...In the past decades,ion conductive polymers and elastomers have drawn worldwide attention for their advanced functions in batteries,electroactive soft robotics,and sensors.Stretchable ionic elastomers with dispersed soft ionic moieties such as ionic liquids have gained remarkable attention as soft sensors,in applications such as the wearable devices that are often called electric skins.A considerable amount of research has been done on ionic-elastomer-based strain,pressure,and shear sensors;however,to the best of our knowledge,this research has not yet been reviewed.In this review,we summarize the materials and performance properties of engineered ionic elastomer actuators and sensors.First,we review three classes of ionic elastomer actuators—namely,ionic polymer metal composites,ionic conducting polymers,and ionic polymer/carbon nanocomposites—and provide perspectives for future actuators,such as adaptive four-dimensional(4D)printed systems and ionic liquid crystal elastomers(iLCEs).Next,we review the state of the art of ionic elastomeric strain and pressure sensors.We also discuss future wearable strain sensors for biomechanical applications and sports performance tracking.Finally,we present the preliminary results of iLCE sensors based on flexoelectric signals and their amplification by integrating them with organic electrochemical transistors.展开更多
This paper studies wave propagation in a soft electroactive cylinder with an under- lying finite deformation in the presence of an electric biasing field. Based on a recently proposed nonlinear framework for electroel...This paper studies wave propagation in a soft electroactive cylinder with an under- lying finite deformation in the presence of an electric biasing field. Based on a recently proposed nonlinear framework for electroelastieity and the associated linear incremental theory, the basic equations governing the axisymmetric wave motion in the cylinder, which is subjected to homo- geneous pre-stretches and pre-existing axial electric displacement, are presented when the elec- troactive material is isotropic and incompressible. Exact wave solution is then derived in terms of (modified) Bessel functions. For a prototype model of nonlinear electroactive material, illus- trative numerical results are given. It is shown that the effect of pre-stretch and electric biasing field could be significant on the wave propagation characteristics.展开更多
Microbial electrosynthesis(MES)employs microbial catalysts and electrochemistry to enhance CO_(2)bioconversion to organics with concurrent waste biorefining capability.The aim of this review is to comprehensively disc...Microbial electrosynthesis(MES)employs microbial catalysts and electrochemistry to enhance CO_(2)bioconversion to organics with concurrent waste biorefining capability.The aim of this review is to comprehensively discuss the current state of the art and prospects of medium chain fatty acids(MCFAs)production in MES from CO_(2)and organic wastes.Fundamental mechanisms and development of MCFAs production via conventional fermentation are introduced as well.Studies on MCFAs production in MES are summarized,highlighting the strategy of multiple-electron donors(EDs).Challenges for MCFAs production in MES from CO_(2)are presented,and the primary discussions included methanogenesis inhibition,adenosine triphosphate(ATP)limitations of acetogens,and production of limited EDs via solventogenesis.Possible applications of electrochemical approaches to promote the bioconversion of actual waste materials with MCFAs production are analyzed.Finally,future directions are explored,including multi-stage reactions,substrate supply,product extraction,and microbial pathways.展开更多
Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop nove...Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop novel,cost-effective electrocatalytic systems.In this study,a new multicomponent nanocomposite was assembled by combining functionalized multiwalled carbon nanotubes,a Cu-based metal–organic framework(MOF)(HKUST-1 or HK),and a sulfidized NiMn-layered double hydroxide(NiMn-S).The resulting nanocomposite,abbreviated as MW/HK/NiMn-S,features a unique architecture,high porosity,numerous electroactive Cu/Ni/Mn sites,fast charge transfer,excellent structural stability,and conductivity.At a current density of 10 mA cm-2,this dual-function electrocatalyst shows remarkable performance,with ultralow overpotential values of 163 mV(OER)or 73 mV(HER),as well as low Tafel slopes(57 and 75 mV dec-1,respectively).Additionally,its high turnover frequency values(4.43 s-1 for OER;3.96 s-1 for HER)are significantly superior to those of standard noble metal-based Pt/C and IrO2 systems.The synergistic effect of the nanocomposite's different components is responsible for its enhanced electrocatalytic performance.A density functional theory study revealed that the multi-interface and multicomponent heterostructure contribute to increased electrical conductivity and decreased energy barrier,resulting in superior electrocatalytic HER/OER activity.This study presents a novel vision for designing advanced electrocatalysts with superior performance in water splitting.Various composites have been utilized in water-splitting applications.This study investigates the use of the MW/HK/NiMn-S electrocatalyst for water splitting for the first time to indicate the synergistic effect between carbon-based materials along with layered double hydroxide compounds and porous compounds of MOF.The unique features of each component in this composite can be an interesting topic in the field of water splitting.展开更多
The diffusion coefficients(Dapp) and the heterogeneous electron transfer rate constants(ks)for ferrocene in several polymer solvents were determined by using steady-stae voltammetry. Thetemperature dependence of the t...The diffusion coefficients(Dapp) and the heterogeneous electron transfer rate constants(ks)for ferrocene in several polymer solvents were determined by using steady-stae voltammetry. Thetemperature dependence of the two parameters indicates Arrhenius behavior. The polymer solventeffects on diffusion and electron transfer dynamics of ferrocene were discussed展开更多
The present paper describes experiments aimed at delineating significant chemical characteristics of electrochemical reactions in polymeric solutions, including how rigid solvent environments affect mass transport rat...The present paper describes experiments aimed at delineating significant chemical characteristics of electrochemical reactions in polymeric solutions, including how rigid solvent environments affect mass transport rates, and also discusses the possibility that the microelectrode coated with poly(ethylene oxide)(PEO) film can be used as gas sensor.展开更多
Photoelectrochemical and electrochemical reduction of CO_2 into organic chemicals is promising for directly or indirectly transforming solar energy into chemical energy for further utilization. However,research on the...Photoelectrochemical and electrochemical reduction of CO_2 into organic chemicals is promising for directly or indirectly transforming solar energy into chemical energy for further utilization. However,research on the electroactive species in these processes has been rather limited. In this work, we investigated possible electroactive species(CO_2 or HCO_3~– ) involved in the electrochemical reduction of KHCO_3 at elevated temperatures without CO_2 bubbling. The results showed that CO, CH_4, and C_2H_4 were produced after electrochemical reduction of 3.0 mol/L KHCO_3 at elevated temperature on a Cu electrode even without CO_2 bubbling, although their faradaic efficiencies were low(< 6 %). Measurements for CO_2 generation from the decomposition of HCO_3~– showed that elevated temperature and high HCO_3~– concentration strongly promoted this process. These results suggested that the in-situ produced CO_2 from the decomposition of HCO_3~– was probably the electroactive species in the electrochemical reduction of HCO_3~– without CO_2 bubbling. Changes of the Gibbs free energy, rate constant, and activation energy of the decomposition of HCO_3~– into CO_2 were also investigated and calculated from the experimental data.展开更多
We theoretically study the indentation response of a compressible soft electroactive material by a rigid punch. The half-space material is assumed to be initially subjected to a finite deformation and an electric bias...We theoretically study the indentation response of a compressible soft electroactive material by a rigid punch. The half-space material is assumed to be initially subjected to a finite deformation and an electric biasing field. By adopting the linearized theory for incremental fields, which is established on the basis of a general nonlinear theory for electroelasticity, the appropriate equations governing the perturbed infinitesimal elastic and electric fields are derived particularly when the material is subjected to a uniform equibiaxial stretch and a uniform electric displacement. A general solution to the governing equations is presented, which is concisely expressed in terms of four quasi-harmonic functions. By adopting the potential theory method, exact contact solutions for three common perfectly conducting rigid indenters of fiat-ended circular, conical and spherical geometries can be derived, and some explicit relations that are of practical importance are outlined.展开更多
In this work,microbiologically influenced corrosion(MIC)of 316 L stainless steel(SS)caused by oral microbiota was investigated with HOMINGS 16 S rRNA gene sequencing technology,and electrochemical and surface analysis...In this work,microbiologically influenced corrosion(MIC)of 316 L stainless steel(SS)caused by oral microbiota was investigated with HOMINGS 16 S rRNA gene sequencing technology,and electrochemical and surface analysis techniques.The results showed that oral microbiota from different subjects developed multi-species biofilms with significant differences in structure and composition of bacteria strains on the316 L SS coupons.In the presence of oral microbiota,more severe pitting corrosion and faster dissolution of metallic ions including Ni and Cr were observed.The biofilm considerably decreased the pitting potential of 316 L SS from 1268.0±29.1 mV vs.SCE(abiotic control)to less than 500 mV vs.SCE.The corrosion current density in the presence of oral microbiota from subject 1(115.3±83.3 nA cm^(-2))and subject 2(184.4±162.0 nA cm^(-2))was at least 4 times more than that in the abiotic medium(28.0±2.3 nA cm^(-2)).The electroactive microorganisms with the potential to facilitate corrosion via extracellular electron transfer found in oral microbiota may be mainly responsible for the accelerated corrosion.展开更多
The simplification of localized surface plasmon resonance(LSPR) detection can further promote the development of optical biosensing application in point-of-care testing. In this study, we proposed a simple light emitt...The simplification of localized surface plasmon resonance(LSPR) detection can further promote the development of optical biosensing application in point-of-care testing. In this study, we proposed a simple light emitting diode(LED) based single-wavelength LSPR sensor modulated with bio-electron transfers for the detection of electroactive biomolecules. Indium tin oxide electrode loaded with nanocomposites of polyaniline coated gold nanorod was used as LSPR chip, and the applied electric potential was scanned at the LSPR chip for single-wavelength LSPR biosensing. Under the scanning of applied potentials, biological electron transfer of redox reaction was employed to demonstrate the bioelectronic modulation of single-wavelength LSPR for selective electroactive biomolecule detection. Without any additional recognition material, electroactive biomolecules uric acid and dopamine were detected directly with a sensitivity of 5.05 μmol/L and 7.11 μmol/L at their specific oxidation potentials, respectively. With the simplified optical configuration and selective bioelectronic modulation, the single-wavelength LSPR sensor is promising for the development of simple, low-cost, and high specificity optical biosensor for point-of-care testing of electroactive biomolecules.展开更多
基金Project(50473022) supported by the National Natural Science Foundation project supported by the State Key Laboratoryof Chemo/Biosensing and Chemometrics of China
文摘Nano-fibrous polyaniline was synthesized on stainless steel electrode in 0.5mol·L-1 H2SO4 solution by pulse galvanostatic method. The effects of synthetic conditions of pulse galvanostatic method on the electroactivity of polyaniline were investigated. The results show that the electroactivity of polyaniline film strongly depends on the synthetic conditions, such as the ratio of “on time” to “off time”(ton/toff), frequency, monomer concentration, temperature and mean current density. Different electroactivities of polyaniline are caused by different morphologies of polyaniline. The nano-fibrous polyaniline has higher electroactivity than polyaniline with other morphologies. Under the following conditions: mean current density of pulse galvanostatic method 13mA·cm-2, ton/toff 1, frequency 200Hz, monomer concentration 0.3mol·L-1 and temperature 20℃, nano-fibrous polyaniline film with the highest electroactivity can be obtained.
基金National Natural Science Foundation of China,Grant/Award Number:22378366。
文摘Metal-organic frameworks(MOFs)have emerged as promising materials in the realm of electrocatalysis due to their high surface area,tunable porosity,and versatile chemical functionality.However,their practical application has been hampered by inherent limitations such as low electrical conductivity and a limited number of active metal sites.Researchers addressed these challenges through various strategies,including enhancing conductivity by incorporating conductive materials and metal nanoparticles,modifying the structure and composition of MOFs by replacing metal nodes and functionalizing linkers,and preparing MOFs catalysts through thermal processes such as decarburization and con-version into metal oxides,phosphides(MPs),and sulfides(MSs).This review provided a comprehensive summary of the strategies that were employed to enhance the electroactivity of MOFs for improved electrocatalytic performance in recent years.It also explored future directions and potential innovations in the design and synthesis of MOF‐based electrocatalysts,offering valuable insights for advancing their application in sustainable energy technologies.
基金support of the National Natural Science Foundation of China(Grant No.52205593)Shaanxi Natural Science Foundation Project(2024JC-YBMS-711).
文摘The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration.Inspired by bioelectricity,electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix,thereby accelerating bone regeneration.With ongoing advances in biomaterials and energy-harvesting techniques,electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue.In this review,we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Next,we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering.Finally,we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
基金funded by the Russian Science Foundation(RSF),grantNo.24-23-00558,https://rscf.ru/en/project/24-23-00558/(accessed on 04 February 2025).
文摘The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies.
基金Financial support by Natural Science Foundation of China(52430001)is acknowledged.
文摘We developed a strategy involving an electroactive biofiltration dynamic membrane(EBDM)for wastewater treatment and membrane fouling mitigation.This approach utilizes a cathode potential within an anaerobic dynamic membrane bioreactor to establish a growth equilibrium electroactive fouling layer.Over a 240 day operation period,the EBDM exhibited outstanding performance,characterized by an ultralow fouling rate(transmembrane pressure<2.5 kPa),superior effluent quality(chemical oxygen demand(COD)removal>93%and turbidity 2 nephelometric turbidity units(NTU)),and a 7.2%increase in methane(CH4)productivity.Morphological analysis revealed that the EBDM acted as a biofilter consisting of a structured,interconnected,multilevel dynamic membrane system with orderly clogging.In the EBDM system,the balanced-growth fouling layers presented fewer biofoulants and looser secondary protein structures.Furthermore,the applied electric field modified the physicochemical properties of the biomass,leading to a decrease in fouling potential.Quartz crystal microbalance with dissipation monitoring analysis indicated that growth equilibrium promoted a looser fouling layer with a lower adsorption mass than did the denser,viscoelastic fouling layer observed in the control reactor.Metagenomic sequencing further demonstrated that continuous electrical stimulation encouraged the development of an electroactive fouling layer with enhanced microbial metabolic functionality on the EBDM.This approach selectively modifies metabolic pathways and increases the degradation of foulants.The EBDM strategy successfully established an ordered-clogging,step-filtered,and balanced-growth electroactive fouling layer,achieving a synergistic effect in reducing membrane fouling,enhancing effluent quality,and improving CH_(4)productivity.
文摘Vanadium oxide hydrate V3O7..H2O (H2V3O8) nanobelts have been synthesized by hydrothermal approach using V2O5 as vanadium source and phenolphthalein as structure-directing agent. Techniques X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy and nitrogen adsorption/desorption isotherms have been used to characterize the structure, morphology and composition of the nanobelts. The V3O7. H2O nanobelts are up to several hundreds of nanometers, the widths and thicknesses are 90 and 40 nm, respectively. The electroactivity of the nanobelts has been investigated. The as-synthesized material is promising for chemical and energy-related applications such as catalysts, electrochemical device and it may be applied in rechargeable lithium-ion batteries.
基金the Department of Science and Technology for providing INSPIRE Faculty Research Grant
文摘Electrochemical biosensor holds great promise in the biomedical area due to its enhanced specificity, sensitivity, label-free nature and cost effectiveness for rapid point-of-care detection of diseases at bedside. In this review, we are focusing on the working principle of electrochemical biosensor and how it can be employed in detecting biomarkers of fatal diseases like cancer, AIDS, hepatitis and cardiovascular diseases. Recent advances in the development of implantable biosensors and exploration of nanomaterials in fabrication of electrodes with increasing the sensitivity of biosensor for quick and easy detection of biomolecules have been elucidated in detail. Electrochemical-based detection of heavy metal ions which cause harmful effect on human health has been discussed. Key challenges associated with the electrochemical sensor and its future perspectives are also addressed.
基金the Natural Science Foundation of Shanghai,China(No.18ZR1401000)the Shanghai Pujiang Program(No.18PJ1400400)Donghua University for the start-up grant(No.113-07-005710)。
文摘Global climate change,growing population,and environmental pollution underscore the need for a greater focus on providing advanced water treatment technologies.Although electrochemical basedprocesses are becoming promising solutions,they still face challenges owing to mass transport and upscaling which hinder the exploitation of this technology.Electrode design and reactor configuration are key factors for achieving operational improvements.The electroactive membrane has proven to be a breakthrough technology integrating electrochemistry and membrane separation with an enhanced mass transport by convection.In this review article,we discuss recent progress in environmental applications of electroactive membranes with particular focus on those composed of carbon nanotubes(CNT)due to their intriguing physicochemical prope rties.Their applications in degradation of refractory contaminants,detoxification and sequestration of toxic heavy metal ions,and membrane fouling alleviations are systematically reviewed.We then discuss the existing limitations and opportunities for future research.The development of advanced electroactive systems depends on interdisciplinary collaborations in the areas of materials,electrochemistry,membrane development,and environmental sciences.
文摘Electroactive shape memory composites were synthesized using polybutadiene epoxy (PBEP) and bisphenol A type cyanate ester (BACE) filled with different contents of carbon black (CB). Dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), electrical performance and electroactive shape memory behavior were systematically investigated. It is found that the volume resistivity decreased due to excellent electrical conductivity of CB, in turn resulting in good electroactive shape memory properties. The content of CB and applied voltage had significant influence on electroactive shape memory effect of developed BACE/PBEP/CB composites. Shape recovery can be observed within a few seconds with the CB content of 5 wt% and voltage of 60 V. Shape recovery time decreased with increasing content of CB and voltage. The infrared thermometer revealed that the temperature rises above the glass transition temperature faster with the increase of voltage and the decrease of resistance.
基金This work was supported by the National Science Foundation(DMR-1904167).
文摘In the past decades,ion conductive polymers and elastomers have drawn worldwide attention for their advanced functions in batteries,electroactive soft robotics,and sensors.Stretchable ionic elastomers with dispersed soft ionic moieties such as ionic liquids have gained remarkable attention as soft sensors,in applications such as the wearable devices that are often called electric skins.A considerable amount of research has been done on ionic-elastomer-based strain,pressure,and shear sensors;however,to the best of our knowledge,this research has not yet been reviewed.In this review,we summarize the materials and performance properties of engineered ionic elastomer actuators and sensors.First,we review three classes of ionic elastomer actuators—namely,ionic polymer metal composites,ionic conducting polymers,and ionic polymer/carbon nanocomposites—and provide perspectives for future actuators,such as adaptive four-dimensional(4D)printed systems and ionic liquid crystal elastomers(iLCEs).Next,we review the state of the art of ionic elastomeric strain and pressure sensors.We also discuss future wearable strain sensors for biomechanical applications and sports performance tracking.Finally,we present the preliminary results of iLCE sensors based on flexoelectric signals and their amplification by integrating them with organic electrochemical transistors.
基金supported by the National Natural Science Foundation of China (Nos. 10832009 and 11090333)the Fundamental Research Funds for Central Universities (No. 2011XZZX002)
文摘This paper studies wave propagation in a soft electroactive cylinder with an under- lying finite deformation in the presence of an electric biasing field. Based on a recently proposed nonlinear framework for electroelastieity and the associated linear incremental theory, the basic equations governing the axisymmetric wave motion in the cylinder, which is subjected to homo- geneous pre-stretches and pre-existing axial electric displacement, are presented when the elec- troactive material is isotropic and incompressible. Exact wave solution is then derived in terms of (modified) Bessel functions. For a prototype model of nonlinear electroactive material, illus- trative numerical results are given. It is shown that the effect of pre-stretch and electric biasing field could be significant on the wave propagation characteristics.
基金supported by the National Natural Science Foundation of China(51908131)Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(19K05ESPCT)+1 种基金the Chinese Academy of Sciences(CAS)Key Laboratory of Environmental and Applied Microbiology&Environmental Microbiology Key Laboratory of Sichuan Province,Chengdu Institute of Biology,Chinese Academy of Sciences(KLCAS-2019-1)the Fujian Provincial Natural Science Foundation of China(2020J01563)。
文摘Microbial electrosynthesis(MES)employs microbial catalysts and electrochemistry to enhance CO_(2)bioconversion to organics with concurrent waste biorefining capability.The aim of this review is to comprehensively discuss the current state of the art and prospects of medium chain fatty acids(MCFAs)production in MES from CO_(2)and organic wastes.Fundamental mechanisms and development of MCFAs production via conventional fermentation are introduced as well.Studies on MCFAs production in MES are summarized,highlighting the strategy of multiple-electron donors(EDs).Challenges for MCFAs production in MES from CO_(2)are presented,and the primary discussions included methanogenesis inhibition,adenosine triphosphate(ATP)limitations of acetogens,and production of limited EDs via solventogenesis.Possible applications of electrochemical approaches to promote the bioconversion of actual waste materials with MCFAs production are analyzed.Finally,future directions are explored,including multi-stage reactions,substrate supply,product extraction,and microbial pathways.
基金Iran National Science Foundation(INSF)under project No.4025105the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2022-K31)+1 种基金the Zhejiang Province Key Research and Development Project(2023 C01191)Alexander M.Kirillov acknowledges the Foundation for Science and Technology(LISBOA-01-0145-FEDER-029697,PTDC/QUIQIN/3898/2020,LA/P/0056/2020,UIDB/00100/2020).
文摘Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop novel,cost-effective electrocatalytic systems.In this study,a new multicomponent nanocomposite was assembled by combining functionalized multiwalled carbon nanotubes,a Cu-based metal–organic framework(MOF)(HKUST-1 or HK),and a sulfidized NiMn-layered double hydroxide(NiMn-S).The resulting nanocomposite,abbreviated as MW/HK/NiMn-S,features a unique architecture,high porosity,numerous electroactive Cu/Ni/Mn sites,fast charge transfer,excellent structural stability,and conductivity.At a current density of 10 mA cm-2,this dual-function electrocatalyst shows remarkable performance,with ultralow overpotential values of 163 mV(OER)or 73 mV(HER),as well as low Tafel slopes(57 and 75 mV dec-1,respectively).Additionally,its high turnover frequency values(4.43 s-1 for OER;3.96 s-1 for HER)are significantly superior to those of standard noble metal-based Pt/C and IrO2 systems.The synergistic effect of the nanocomposite's different components is responsible for its enhanced electrocatalytic performance.A density functional theory study revealed that the multi-interface and multicomponent heterostructure contribute to increased electrical conductivity and decreased energy barrier,resulting in superior electrocatalytic HER/OER activity.This study presents a novel vision for designing advanced electrocatalysts with superior performance in water splitting.Various composites have been utilized in water-splitting applications.This study investigates the use of the MW/HK/NiMn-S electrocatalyst for water splitting for the first time to indicate the synergistic effect between carbon-based materials along with layered double hydroxide compounds and porous compounds of MOF.The unique features of each component in this composite can be an interesting topic in the field of water splitting.
文摘The diffusion coefficients(Dapp) and the heterogeneous electron transfer rate constants(ks)for ferrocene in several polymer solvents were determined by using steady-stae voltammetry. Thetemperature dependence of the two parameters indicates Arrhenius behavior. The polymer solventeffects on diffusion and electron transfer dynamics of ferrocene were discussed
文摘The present paper describes experiments aimed at delineating significant chemical characteristics of electrochemical reactions in polymeric solutions, including how rigid solvent environments affect mass transport rates, and also discusses the possibility that the microelectrode coated with poly(ethylene oxide)(PEO) film can be used as gas sensor.
文摘Photoelectrochemical and electrochemical reduction of CO_2 into organic chemicals is promising for directly or indirectly transforming solar energy into chemical energy for further utilization. However,research on the electroactive species in these processes has been rather limited. In this work, we investigated possible electroactive species(CO_2 or HCO_3~– ) involved in the electrochemical reduction of KHCO_3 at elevated temperatures without CO_2 bubbling. The results showed that CO, CH_4, and C_2H_4 were produced after electrochemical reduction of 3.0 mol/L KHCO_3 at elevated temperature on a Cu electrode even without CO_2 bubbling, although their faradaic efficiencies were low(< 6 %). Measurements for CO_2 generation from the decomposition of HCO_3~– showed that elevated temperature and high HCO_3~– concentration strongly promoted this process. These results suggested that the in-situ produced CO_2 from the decomposition of HCO_3~– was probably the electroactive species in the electrochemical reduction of HCO_3~– without CO_2 bubbling. Changes of the Gibbs free energy, rate constant, and activation energy of the decomposition of HCO_3~– into CO_2 were also investigated and calculated from the experimental data.
基金supported by the National Natural Science Foundation of China(10832009 and 11090333)the Fundamental Research Funds for Central Universities(2011XZZX002)
文摘We theoretically study the indentation response of a compressible soft electroactive material by a rigid punch. The half-space material is assumed to be initially subjected to a finite deformation and an electric biasing field. By adopting the linearized theory for incremental fields, which is established on the basis of a general nonlinear theory for electroelasticity, the appropriate equations governing the perturbed infinitesimal elastic and electric fields are derived particularly when the material is subjected to a uniform equibiaxial stretch and a uniform electric displacement. A general solution to the governing equations is presented, which is concisely expressed in terms of four quasi-harmonic functions. By adopting the potential theory method, exact contact solutions for three common perfectly conducting rigid indenters of fiat-ended circular, conical and spherical geometries can be derived, and some explicit relations that are of practical importance are outlined.
基金financially supported by the National Natural Science Foundation of China(Nos.U2006219,51871050 and51901039)the Natural Science Foundation of Liaoning Province(No.20180510041)+1 种基金the Liaoning Revitalization Talents Program(No.XLYC1907158)the Fundamental Research Funds for the Central Universities of the Ministry of Education of China(Nos.N180205021,N180203019,and N2002019)。
文摘In this work,microbiologically influenced corrosion(MIC)of 316 L stainless steel(SS)caused by oral microbiota was investigated with HOMINGS 16 S rRNA gene sequencing technology,and electrochemical and surface analysis techniques.The results showed that oral microbiota from different subjects developed multi-species biofilms with significant differences in structure and composition of bacteria strains on the316 L SS coupons.In the presence of oral microbiota,more severe pitting corrosion and faster dissolution of metallic ions including Ni and Cr were observed.The biofilm considerably decreased the pitting potential of 316 L SS from 1268.0±29.1 mV vs.SCE(abiotic control)to less than 500 mV vs.SCE.The corrosion current density in the presence of oral microbiota from subject 1(115.3±83.3 nA cm^(-2))and subject 2(184.4±162.0 nA cm^(-2))was at least 4 times more than that in the abiotic medium(28.0±2.3 nA cm^(-2)).The electroactive microorganisms with the potential to facilitate corrosion via extracellular electron transfer found in oral microbiota may be mainly responsible for the accelerated corrosion.
基金the National Natural Science Foundation of China (Nos. 81971703, 81801793, 31671007)the China Postdoctoral Science Foundation (Nos. 2018M630677, 2019T120518)+3 种基金the National Key Research and Development Program (No. 2018YFC1707701)the Zhejiang Provincial Natural Science Foundation of China (No. LZ18C100001)the Fundamental Research Funds for the Central Universities (Nos. 2021QNA5018, 2021FZZX002-05)the Collaborative Innovation Center of Traditional Chinese Medicine Health Management of Fujian Province of China。
文摘The simplification of localized surface plasmon resonance(LSPR) detection can further promote the development of optical biosensing application in point-of-care testing. In this study, we proposed a simple light emitting diode(LED) based single-wavelength LSPR sensor modulated with bio-electron transfers for the detection of electroactive biomolecules. Indium tin oxide electrode loaded with nanocomposites of polyaniline coated gold nanorod was used as LSPR chip, and the applied electric potential was scanned at the LSPR chip for single-wavelength LSPR biosensing. Under the scanning of applied potentials, biological electron transfer of redox reaction was employed to demonstrate the bioelectronic modulation of single-wavelength LSPR for selective electroactive biomolecule detection. Without any additional recognition material, electroactive biomolecules uric acid and dopamine were detected directly with a sensitivity of 5.05 μmol/L and 7.11 μmol/L at their specific oxidation potentials, respectively. With the simplified optical configuration and selective bioelectronic modulation, the single-wavelength LSPR sensor is promising for the development of simple, low-cost, and high specificity optical biosensor for point-of-care testing of electroactive biomolecules.