Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however...Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however,those require improvements in terms of economic feasibility,convenience,and lateral resolution.To address this,this study examined an extraction method to determine spatial autocorrelation velocity dispersion curves for application in near-surface exploration.展开更多
The Zhujiang(Pearl)River Mouth Basin(PRMB)is located in the northern part of the South China Sea,and it is one of China’s three major offshore hydrocarbon-rich basins,playing an indispensable role in meeting the coun...The Zhujiang(Pearl)River Mouth Basin(PRMB)is located in the northern part of the South China Sea,and it is one of China’s three major offshore hydrocarbon-rich basins,playing an indispensable role in meeting the country’s energy needs.Exploration for oil in the PRMB started early and has achieved remarkable results in some sags,but many sags have yet to yield significant discoveries,necessitating the search for new favorable exploration areas.The aim of this study is to analyze the deep structural characteristics of various sags in the PRMB and predict favorable exploration areas,providing corresponding support for the next strategic breakthrough in oil exploration.Some studies indicate a certain relationship between the Moho depth and crustal thickness and the occurrence of oil.In this paper,based on satellite altimetry gravity anomaly data,we utilize a Moho depth inversion method based on variable residual crustal density to obtain the Moho depth in the PRMB,from which the crustal thickness and crustal stretching factor of the basin are calculated.The results show that the Moho depth in the PRMB ranges from 10 km to 37 km,the crustal thickness ranges from 7 km to 35 km,and the crustal stretching factor ranges from 0.9 to 3.0.Finally,we propose a comprehensive evaluation scheme for oil resoureces based on the CRiteria Importance Through Intercriteria Correlation(CRITIC)method,which comprehensively evaluates multiple factors,such as the Cenozoic sedimentary filling scale,Cenozoic thickness,Moho depth,crustal thickness,and crustal stretching factor,and provides evaluation criteria for identifying hydrocarbon-rich sags.According to this evaluation scheme,the exploration potential is relatively high in the Liwan Sag,Jinghai Sag,Heshan Sag,and Jieyang Sag,which are favorable exploration areas.展开更多
There are large deltaic systems in the Triassic Yanchang Formation in the northern Shaanxi area of the Ordos Basin, and developed two sets of good source-reservoir-caprock assemblages and many sets of oil-bearing beds...There are large deltaic systems in the Triassic Yanchang Formation in the northern Shaanxi area of the Ordos Basin, and developed two sets of good source-reservoir-caprock assemblages and many sets of oil-bearing beds. Exploration experience demonstrates that the formation and distribution of the reservoir were controlled by the generative depression of the Yanchang Formation, and deltaic reservoir sand body is the material basis for large-scale oilfields. In addition, secondary laumontite in a low permeable area was dissolved and then a high permeable area was formed. The updip lithologic variety of reservoir sand bodies is favorable to the formation of subtle lithologic traps, and the deltaic reservoirs are characterized by large multi-beds of oil-generation and abundant hydrocarbon resources. In this paper, the petroleum geologic settings of the studied area are analyzed, and the accumulation characteristics and exploration methods of lithologic reservoirs are summarized. It is of theoretical significance for the study of the exploration theories of lithologic reservoirs, and also expedites the exploration steps of deltaic reservoirs in the northern Shaanxi area.展开更多
The greatest difficulties in recognizing geochemical hydrocarbon anomalies are: (1) how to objectively and accurately separate anomalies from background; (2) how to distinguish hydrocarbon pool related apical anomal...The greatest difficulties in recognizing geochemical hydrocarbon anomalies are: (1) how to objectively and accurately separate anomalies from background; (2) how to distinguish hydrocarbon pool related apical anomalies from lateral anomalies controlled by faults; and (3) how to eliminate interferences. These uncertainties are serious obstacles for the wide acceptance and use of geochemical techniques in hydrocarbon exploration. In this paper, the features of hydrocarbon anomalies were analyzed based on the micro migration mechanisms. In most cases, there are two anomalous populations or point groups, which are produced by two distinct mechanisms: (1) a population that directly reflects oil and gas fields, and (2) one that is related to structures such as faults. Statistical studies show that background anomalous populations and the boundaries between them can be described by the population means, prior probabilities, which are the proportions of population sizes, and covariance matrices, when background and anomalous populations have normal distributions. When this normality condition is met, a series of formulas can be derived. The method is designed on the basis of these allows: (1) univariate anomaly recognition, (2) elimination of interferences, (3) multivariate anomaly recognition, and (4) multivariate anomaly combination which depicts a more representative picture of morphology of the anomalous target than individual anomalies. The univariate and multivariate anomaly recognition can not only separate anomalies from background objectively, but also simultaneously distinguish the two types of anomalies objectively. This method was applied to the hydrocarbon data in Yangshuiwu region, Hebei Province. The interferences from regional variation of background were eliminated, and the interpretation uncertainty was reduced greatly as the anomalous populations were separated. The method was also used in Daxing region within the confines of Beijing City, and Aershan and Jiergalangtu regions in Inner Mongolia.展开更多
In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international...In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).展开更多
Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization i...Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization is still in development.This study used the controlled source audio‐frequency magnetotelluric method technology for large‐scale exploration to obtain underground electrical structure information and micromotion detection technology to obtain underground wave velocity structure information.The combination of two detection technologies was used for local identification of geothermal reservoirs.Further,auxiliary correction and inversion constraint were implemented through the audio magnetotelluric sounding technology for maximum authenticity restoration of the near‐and transition‐field data.Through these technology improvements,a geothermal geological model was established for the Binhai County of Jiangsu Province in China and potential geothermal well locations were identified.On this basis,a geothermal well was drilled nearly 3000m deep,with a daily water volume of over 2000m3/day and a geothermal water temperature of 51°C at the well head.It is found that predictions using the above integrated geophysical exploration technology are in good agreement with the well geological formation data.This integrated geophysical technology can be effectively applied for geothermal exploration with high precision and reliability.展开更多
The nation-wide iron ore exploration is primarily based on aeromagnetic survey,based upon which a series of ground follow-up and drilling examination were carried out,and then reconnaissance and detailed investigation...The nation-wide iron ore exploration is primarily based on aeromagnetic survey,based upon which a series of ground follow-up and drilling examination were carried out,and then reconnaissance and detailed investigation and exploration were fulfilled.However,for some large.展开更多
The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous...The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous attempts have failed to determine the scope of the old goal and the water distribution in the mine by separate use of various exploration methods such as seismic method, direct current resistivity, audio magnetotellurics, controlled-source audio-frequency magnetotellurics, and transient electromag-netics. To solve this difficult problem, a combination of the wide-field electromagnetic method and the flow field fitting method with three-dimensional resistivity data inversion was applied to determine the precise scope of the goal and the locations where water is present, and to identify the hydraulic con- nection between the water layers so as to provide reliable technical support for safe coal production. Reasonable results were achieved, with all these goals being met. As a result, a mining area of nearly 4 km^2 has been released for operation.展开更多
Based on the results of researches and applications for many years, it has been discovered that new methods and techniques for geochemical exploration of oil and gas such as δC, altered carbonate, Hg in absorption ph...Based on the results of researches and applications for many years, it has been discovered that new methods and techniques for geochemical exploration of oil and gas such as δC, altered carbonate, Hg in absorption phase, Ks, Fe2+, δ13C, fluorescence in two and three dimensions, and N2 and O2 in heat release can give full play in the following five fields: (1) optimization of the favourable target or hollow zones and structural zones in a region; (2) evaluation of oil traps and delineation of prospective oil and gas areas; (3) prediction of deep-seated oil-bearing horizons; (4) evaluation of the genesis of oil and gas geochemical anomalies and determination of the types of oil and gas accumulations; (5) forecast of the burial depths of oil and gas pools.展开更多
The high harmonic generation (HHG) from the CS<sub>2</sub> molecule in intense laser fields is investigated using the extended Lewenstein method. The initial state is the highest-occupied molecular orbital...The high harmonic generation (HHG) from the CS<sub>2</sub> molecule in intense laser fields is investigated using the extended Lewenstein method. The initial state is the highest-occupied molecular orbital of the CS<sub>2</sub> molecule, which can be well described by Gaussian wave packet using GAMESS-UK package. Compared with the case of the elliptical laser, the HHG can be extended in two-color circularly polarized laser field. The time-frequency analysis and classical electron trajectory as well as the ionization yield curve are also presented to further explain the underlying mechanism. After adding a static electric field on the z-direction, the single quantum path control is realized and the supercontinuum spectra are obtained. Moreover, an isolated 110 as pulse can be obtained by superposing the harmonics from 130th to 180th order.展开更多
The drilling gas production situation indicates a certain correlation between the shale gas reservoir in the Sichuan Basin and the high and low changes in formation resistivity.These variations are observed in the fir...The drilling gas production situation indicates a certain correlation between the shale gas reservoir in the Sichuan Basin and the high and low changes in formation resistivity.These variations are observed in the first member of the Longmaxi Formation to the Wufeng Formation at the bottom of the Longmaxi Formation.Given this correlation and based on the logging electrical data,this study employs the wide-field electromagnetic method(WFEM)to experimentally detect the electrical characteristics of the deep shale gas target layer in the Yibin area of southern Sichuan.The study also tests the regularity and effectiveness of the electrical parameters for evaluating favorable areas of shale gas reservoirs.In terms of specific operation,the structural pattern of the study area is implemented based on the wide-field electromagnetic results and geological data for comprehensive analysis,which identifies the main hidden faults and their influence range on low resistance.The detailed spatial distribution of the upper Ordovician Wufeng Formation and the lower Silurian Longmaxi Formation in the target layer with a buried depth of 2000-5000m is described.This layer exhibits the characteristics of a continuous and stable distribution of organic shale.After verifying the subsequent electrical logging data,the electrical logging curve is found to be essentially consistent with the shape and trend of the wide-field resistivity curve.This consistency demonstrates the effectiveness of WFEM in detecting shale gas layers.展开更多
Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources,however,its application to gas hydrate reservoirs has been rarely studied.Currently,there is sti...Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources,however,its application to gas hydrate reservoirs has been rarely studied.Currently,there is still limited understanding of the propagation and extension of fractures around the wellbore during the fracturing process of horizontal wells in hydrate reservoirs,as well as the stress interference patterns between fractures.This study simulates hydraulic fracturing processes in hydrate reservoirs using a fluidsolid coupling discrete element method(DEM),and analyzes the impacts of hydrate saturation and geological and engineering factors on fracture extension and stress disturbance.The results show that hydraulic fracturing is more effective when hydrate saturation exceeds 30%and that fracture pressure increases with saturation.The increase in horizontal stress differential enhances the directionality of fracture propagation and reduces stress disturbance.The distribution uniformity index(DUI)reveals that injection pressure is directly proportional to the number of main fractures and inversely proportional to fracturing time,with fracturing efficiency depending on the spacing between injection points and the distance between wells.This work may provide reference for the commercial exploitation of natural gas hydrates.展开更多
Based on the rapid development of China's economy, the construction engineering industry is also in a state of sustainable development, and the total number of engineering projects has increased significantly. Fro...Based on the rapid development of China's economy, the construction engineering industry is also in a state of sustainable development, and the total number of engineering projects has increased significantly. From a certain point of view, the development of engineering projects has also promoted the rapid development of engineering project exploration industry. Hydrogeological problem investigation belongs to the key content of engineering geological exploration, and hydrogeological problems are the key factors causing engineering geological problems. Therefore, it is particularly important to clarify the impact of hydrogeological problems on engineering geological exploration and eliminate potential safety hazards as much as possible.展开更多
In landscape design, plant landscaping is a very important link, and it is also the premise of creating artistic and aesthetic sense of landscape. With the continuous development of society, the role of plants is beco...In landscape design, plant landscaping is a very important link, and it is also the premise of creating artistic and aesthetic sense of landscape. With the continuous development of society, the role of plants is becoming more and more extensive, which not only reflects the improvement of China's economic level, but also reflects people's yearning for the harmonious development of people and nature. This paper discusses the importance of plant landscaping and its design methods in landscape design, hoping to bring some reference opinions to people in the industry.展开更多
With the continuous improvement of China's economic development speed and the level of scientific and technological development, China's coalfield geological investigation has also presented a series of new ch...With the continuous improvement of China's economic development speed and the level of scientific and technological development, China's coalfield geological investigation has also presented a series of new characteristics. Due to the large amount of coal mining in China, the reserves of coal fields are declining sharply. Under this background, it is necessary to master the scientific information about coal fields through geological exploration, so as to optimize the management effect and perfect the technical mechanism, and carry out the coal seam correlation correctly. On the basis of clarifying the important value of coal seam correlation, this paper discusses the concrete practice method of coal seam correlation in coalfield geological exploration for reference.展开更多
At the present stage, the competitive environment among enterprises in our social market is increasingly fierce, which requires strong practical ability and innovation ability for talents. Experimental teaching, as th...At the present stage, the competitive environment among enterprises in our social market is increasingly fierce, which requires strong practical ability and innovation ability for talents. Experimental teaching, as the main means to cultivate talents' problem-solving ability, practical ability and creative ability, should be reformed and innovated in time so as to improve the efficiency and quality of experimental teaching for material forming and control engineering major. Based on this, this paper mainly analyzes the importance of experimental teaching of material forming and control engineering in colleges and universities, and puts forward some methods of exploration and construction of experimental teaching for reference.展开更多
The Transient Electromagnetic(TEM)method is a critical geophysical technique for subsurface exploration of metal ore bodies,primarily utilizing either loop or grounded transmitters.The Long Offset Transient Electromag...The Transient Electromagnetic(TEM)method is a critical geophysical technique for subsurface exploration of metal ore bodies,primarily utilizing either loop or grounded transmitters.The Long Offset Transient Electromagnetic(LOTEM)method employs a grounded-source transmitter,relying on a far-source observation mode and plane wave approximation for detection.However,LOTEM's far-source configuration weakens signal strength,and the plane wave approximation reduces precision,limiting effective detection depth to approximately 1000 m with a comprehensive error of about 15%.Recently,we have developed the grounded-source Short Offset Transient Electromagnetic(SOTEM)method,achieving greater detection depth and accuracy within the 500–2000 m depth range,a crucial interval for mineral resource exploration.This study explores the theoretical framework,instrumentation,data processing,and field applications of SOTEM.Based on a point charge element model,SOTEM accurately computes surface wave effects in EM field calculations,optimized for near-source observation.High-power,high-resolution,wide-bandwidth exploration equipment and an advanced three-dimensional hybrid inversion technique were also developed to enhance the method's effectiveness.Application of SOTEM to the deep exploration of the Zhou'an Ni-Cu-PGE deposit in Henan Province yielded high-resolution imaging of conductivity structures to about 2.5 km depth.These results,consistent with existing drill data,delineated mineralized ore bodies from surrounding formations,identified zones of mineralization potential,and suggested extensive resource prospects in the region.展开更多
Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source k...Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source kitchen,the possibility that they could constitute potential plays would be overlooked in the subsequent exploration program.Based on the hydrocarbon exploration practice of the Jizhong Depression and the Erlian Basin in the past several years,this paper discusses a new understanding that reservoir distribution is controlled by multiple factors and lithological accumulations are more likely to form in trough areas.It further documents the three main factors controlling the formation of large lithological hydrocarbon accumulations in trough areas.The paper also discusses the new concept that structural and lithological accumulations not only co-exist but also complement each other.We propose that fan-delta fronts on inverted steep slopes in troughs,delta fronts and sublacustrine fans on gentle slopes,channel sands along toes of fault scarps are favorable locations for discovery of new oil accumulations.The application of this concept has led to the discovery of several hundreds of million tonnes of oil in place in trough areas in the Jizhong Depression and the Erlian Basin.展开更多
基金supported by the Henan Province science and technology research project(Grant No.242102321031)National Natural Science Foundation of China(grant numbers 42207200).
文摘Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however,those require improvements in terms of economic feasibility,convenience,and lateral resolution.To address this,this study examined an extraction method to determine spatial autocorrelation velocity dispersion curves for application in near-surface exploration.
基金The Fundamental Research Funds for the Central Universities,CHD,under contract No.300102264106the Shaanxi Natural Science Basic Research Program under contract No.2025JC-YBQN-370the Scientific and Technological Project of CNOOC Research Institute Co.,Ltd.under contract No.CCL2021RCPS0167KQN.
文摘The Zhujiang(Pearl)River Mouth Basin(PRMB)is located in the northern part of the South China Sea,and it is one of China’s three major offshore hydrocarbon-rich basins,playing an indispensable role in meeting the country’s energy needs.Exploration for oil in the PRMB started early and has achieved remarkable results in some sags,but many sags have yet to yield significant discoveries,necessitating the search for new favorable exploration areas.The aim of this study is to analyze the deep structural characteristics of various sags in the PRMB and predict favorable exploration areas,providing corresponding support for the next strategic breakthrough in oil exploration.Some studies indicate a certain relationship between the Moho depth and crustal thickness and the occurrence of oil.In this paper,based on satellite altimetry gravity anomaly data,we utilize a Moho depth inversion method based on variable residual crustal density to obtain the Moho depth in the PRMB,from which the crustal thickness and crustal stretching factor of the basin are calculated.The results show that the Moho depth in the PRMB ranges from 10 km to 37 km,the crustal thickness ranges from 7 km to 35 km,and the crustal stretching factor ranges from 0.9 to 3.0.Finally,we propose a comprehensive evaluation scheme for oil resoureces based on the CRiteria Importance Through Intercriteria Correlation(CRITIC)method,which comprehensively evaluates multiple factors,such as the Cenozoic sedimentary filling scale,Cenozoic thickness,Moho depth,crustal thickness,and crustal stretching factor,and provides evaluation criteria for identifying hydrocarbon-rich sags.According to this evaluation scheme,the exploration potential is relatively high in the Liwan Sag,Jinghai Sag,Heshan Sag,and Jieyang Sag,which are favorable exploration areas.
文摘There are large deltaic systems in the Triassic Yanchang Formation in the northern Shaanxi area of the Ordos Basin, and developed two sets of good source-reservoir-caprock assemblages and many sets of oil-bearing beds. Exploration experience demonstrates that the formation and distribution of the reservoir were controlled by the generative depression of the Yanchang Formation, and deltaic reservoir sand body is the material basis for large-scale oilfields. In addition, secondary laumontite in a low permeable area was dissolved and then a high permeable area was formed. The updip lithologic variety of reservoir sand bodies is favorable to the formation of subtle lithologic traps, and the deltaic reservoirs are characterized by large multi-beds of oil-generation and abundant hydrocarbon resources. In this paper, the petroleum geologic settings of the studied area are analyzed, and the accumulation characteristics and exploration methods of lithologic reservoirs are summarized. It is of theoretical significance for the study of the exploration theories of lithologic reservoirs, and also expedites the exploration steps of deltaic reservoirs in the northern Shaanxi area.
文摘The greatest difficulties in recognizing geochemical hydrocarbon anomalies are: (1) how to objectively and accurately separate anomalies from background; (2) how to distinguish hydrocarbon pool related apical anomalies from lateral anomalies controlled by faults; and (3) how to eliminate interferences. These uncertainties are serious obstacles for the wide acceptance and use of geochemical techniques in hydrocarbon exploration. In this paper, the features of hydrocarbon anomalies were analyzed based on the micro migration mechanisms. In most cases, there are two anomalous populations or point groups, which are produced by two distinct mechanisms: (1) a population that directly reflects oil and gas fields, and (2) one that is related to structures such as faults. Statistical studies show that background anomalous populations and the boundaries between them can be described by the population means, prior probabilities, which are the proportions of population sizes, and covariance matrices, when background and anomalous populations have normal distributions. When this normality condition is met, a series of formulas can be derived. The method is designed on the basis of these allows: (1) univariate anomaly recognition, (2) elimination of interferences, (3) multivariate anomaly recognition, and (4) multivariate anomaly combination which depicts a more representative picture of morphology of the anomalous target than individual anomalies. The univariate and multivariate anomaly recognition can not only separate anomalies from background objectively, but also simultaneously distinguish the two types of anomalies objectively. This method was applied to the hydrocarbon data in Yangshuiwu region, Hebei Province. The interferences from regional variation of background were eliminated, and the interpretation uncertainty was reduced greatly as the anomalous populations were separated. The method was also used in Daxing region within the confines of Beijing City, and Aershan and Jiergalangtu regions in Inner Mongolia.
基金project supported by Science and Technology Innovation Fund(Grant No.KDY2019001)Integrated Geophysical Simulation Lab of Chang’an University(Key Laboratory of Chinese Geophysical Society)
文摘In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).
基金Geological and Mineral Resources Survey of Metallogenic Belt in the Middle and Lower Reaches of Yangtze River,Grant/Award Number:1212011220540Jiangsu 1:50000 Dingsanwei,Kaishan Island,Yangqiao,Chenjiagang,New Huaihe Estuary,Xiangshui Estuary,Dayou,Xiaojie,DayuJian District,Grant/Award Numbers:Base[2012]02‐014‐009,Base[2013]01‐019‐002,Base[2014]01‐021‐003。
文摘Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization is still in development.This study used the controlled source audio‐frequency magnetotelluric method technology for large‐scale exploration to obtain underground electrical structure information and micromotion detection technology to obtain underground wave velocity structure information.The combination of two detection technologies was used for local identification of geothermal reservoirs.Further,auxiliary correction and inversion constraint were implemented through the audio magnetotelluric sounding technology for maximum authenticity restoration of the near‐and transition‐field data.Through these technology improvements,a geothermal geological model was established for the Binhai County of Jiangsu Province in China and potential geothermal well locations were identified.On this basis,a geothermal well was drilled nearly 3000m deep,with a daily water volume of over 2000m3/day and a geothermal water temperature of 51°C at the well head.It is found that predictions using the above integrated geophysical exploration technology are in good agreement with the well geological formation data.This integrated geophysical technology can be effectively applied for geothermal exploration with high precision and reliability.
文摘The nation-wide iron ore exploration is primarily based on aeromagnetic survey,based upon which a series of ground follow-up and drilling examination were carried out,and then reconnaissance and detailed investigation and exploration were fulfilled.However,for some large.
文摘The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous attempts have failed to determine the scope of the old goal and the water distribution in the mine by separate use of various exploration methods such as seismic method, direct current resistivity, audio magnetotellurics, controlled-source audio-frequency magnetotellurics, and transient electromag-netics. To solve this difficult problem, a combination of the wide-field electromagnetic method and the flow field fitting method with three-dimensional resistivity data inversion was applied to determine the precise scope of the goal and the locations where water is present, and to identify the hydraulic con- nection between the water layers so as to provide reliable technical support for safe coal production. Reasonable results were achieved, with all these goals being met. As a result, a mining area of nearly 4 km^2 has been released for operation.
文摘Based on the results of researches and applications for many years, it has been discovered that new methods and techniques for geochemical exploration of oil and gas such as δC, altered carbonate, Hg in absorption phase, Ks, Fe2+, δ13C, fluorescence in two and three dimensions, and N2 and O2 in heat release can give full play in the following five fields: (1) optimization of the favourable target or hollow zones and structural zones in a region; (2) evaluation of oil traps and delineation of prospective oil and gas areas; (3) prediction of deep-seated oil-bearing horizons; (4) evaluation of the genesis of oil and gas geochemical anomalies and determination of the types of oil and gas accumulations; (5) forecast of the burial depths of oil and gas pools.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574117,11271158,61575077 and 11575071
文摘The high harmonic generation (HHG) from the CS<sub>2</sub> molecule in intense laser fields is investigated using the extended Lewenstein method. The initial state is the highest-occupied molecular orbital of the CS<sub>2</sub> molecule, which can be well described by Gaussian wave packet using GAMESS-UK package. Compared with the case of the elliptical laser, the HHG can be extended in two-color circularly polarized laser field. The time-frequency analysis and classical electron trajectory as well as the ionization yield curve are also presented to further explain the underlying mechanism. After adding a static electric field on the z-direction, the single quantum path control is realized and the supercontinuum spectra are obtained. Moreover, an isolated 110 as pulse can be obtained by superposing the harmonics from 130th to 180th order.
基金Supported by the Sichuan Natural Resources Investment Group Technology Innovation Project"Application Research of Wide Area Electromagnetic Method in Shale Gas Electrical Detection in Southern Sichuan"。
文摘The drilling gas production situation indicates a certain correlation between the shale gas reservoir in the Sichuan Basin and the high and low changes in formation resistivity.These variations are observed in the first member of the Longmaxi Formation to the Wufeng Formation at the bottom of the Longmaxi Formation.Given this correlation and based on the logging electrical data,this study employs the wide-field electromagnetic method(WFEM)to experimentally detect the electrical characteristics of the deep shale gas target layer in the Yibin area of southern Sichuan.The study also tests the regularity and effectiveness of the electrical parameters for evaluating favorable areas of shale gas reservoirs.In terms of specific operation,the structural pattern of the study area is implemented based on the wide-field electromagnetic results and geological data for comprehensive analysis,which identifies the main hidden faults and their influence range on low resistance.The detailed spatial distribution of the upper Ordovician Wufeng Formation and the lower Silurian Longmaxi Formation in the target layer with a buried depth of 2000-5000m is described.This layer exhibits the characteristics of a continuous and stable distribution of organic shale.After verifying the subsequent electrical logging data,the electrical logging curve is found to be essentially consistent with the shape and trend of the wide-field resistivity curve.This consistency demonstrates the effectiveness of WFEM in detecting shale gas layers.
基金financially supported by the National Key Research and Development Plan(2023YFC2811001)the National Natural Science Foundation of China(42206233)the Taishan Scholars Program(tsqn202312280,tsqn202306297)。
文摘Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources,however,its application to gas hydrate reservoirs has been rarely studied.Currently,there is still limited understanding of the propagation and extension of fractures around the wellbore during the fracturing process of horizontal wells in hydrate reservoirs,as well as the stress interference patterns between fractures.This study simulates hydraulic fracturing processes in hydrate reservoirs using a fluidsolid coupling discrete element method(DEM),and analyzes the impacts of hydrate saturation and geological and engineering factors on fracture extension and stress disturbance.The results show that hydraulic fracturing is more effective when hydrate saturation exceeds 30%and that fracture pressure increases with saturation.The increase in horizontal stress differential enhances the directionality of fracture propagation and reduces stress disturbance.The distribution uniformity index(DUI)reveals that injection pressure is directly proportional to the number of main fractures and inversely proportional to fracturing time,with fracturing efficiency depending on the spacing between injection points and the distance between wells.This work may provide reference for the commercial exploitation of natural gas hydrates.
文摘Based on the rapid development of China's economy, the construction engineering industry is also in a state of sustainable development, and the total number of engineering projects has increased significantly. From a certain point of view, the development of engineering projects has also promoted the rapid development of engineering project exploration industry. Hydrogeological problem investigation belongs to the key content of engineering geological exploration, and hydrogeological problems are the key factors causing engineering geological problems. Therefore, it is particularly important to clarify the impact of hydrogeological problems on engineering geological exploration and eliminate potential safety hazards as much as possible.
文摘In landscape design, plant landscaping is a very important link, and it is also the premise of creating artistic and aesthetic sense of landscape. With the continuous development of society, the role of plants is becoming more and more extensive, which not only reflects the improvement of China's economic level, but also reflects people's yearning for the harmonious development of people and nature. This paper discusses the importance of plant landscaping and its design methods in landscape design, hoping to bring some reference opinions to people in the industry.
文摘With the continuous improvement of China's economic development speed and the level of scientific and technological development, China's coalfield geological investigation has also presented a series of new characteristics. Due to the large amount of coal mining in China, the reserves of coal fields are declining sharply. Under this background, it is necessary to master the scientific information about coal fields through geological exploration, so as to optimize the management effect and perfect the technical mechanism, and carry out the coal seam correlation correctly. On the basis of clarifying the important value of coal seam correlation, this paper discusses the concrete practice method of coal seam correlation in coalfield geological exploration for reference.
文摘At the present stage, the competitive environment among enterprises in our social market is increasingly fierce, which requires strong practical ability and innovation ability for talents. Experimental teaching, as the main means to cultivate talents' problem-solving ability, practical ability and creative ability, should be reformed and innovated in time so as to improve the efficiency and quality of experimental teaching for material forming and control engineering major. Based on this, this paper mainly analyzes the importance of experimental teaching of material forming and control engineering in colleges and universities, and puts forward some methods of exploration and construction of experimental teaching for reference.
基金supported by the National Natural Science Foundation of China(Grant Nos.42030106,42274192)the National Key Research and Development Program of China(Grant No.2022YFC2903505)。
文摘The Transient Electromagnetic(TEM)method is a critical geophysical technique for subsurface exploration of metal ore bodies,primarily utilizing either loop or grounded transmitters.The Long Offset Transient Electromagnetic(LOTEM)method employs a grounded-source transmitter,relying on a far-source observation mode and plane wave approximation for detection.However,LOTEM's far-source configuration weakens signal strength,and the plane wave approximation reduces precision,limiting effective detection depth to approximately 1000 m with a comprehensive error of about 15%.Recently,we have developed the grounded-source Short Offset Transient Electromagnetic(SOTEM)method,achieving greater detection depth and accuracy within the 500–2000 m depth range,a crucial interval for mineral resource exploration.This study explores the theoretical framework,instrumentation,data processing,and field applications of SOTEM.Based on a point charge element model,SOTEM accurately computes surface wave effects in EM field calculations,optimized for near-source observation.High-power,high-resolution,wide-bandwidth exploration equipment and an advanced three-dimensional hybrid inversion technique were also developed to enhance the method's effectiveness.Application of SOTEM to the deep exploration of the Zhou'an Ni-Cu-PGE deposit in Henan Province yielded high-resolution imaging of conductivity structures to about 2.5 km depth.These results,consistent with existing drill data,delineated mineralized ore bodies from surrounding formations,identified zones of mineralization potential,and suggested extensive resource prospects in the region.
文摘Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source kitchen,the possibility that they could constitute potential plays would be overlooked in the subsequent exploration program.Based on the hydrocarbon exploration practice of the Jizhong Depression and the Erlian Basin in the past several years,this paper discusses a new understanding that reservoir distribution is controlled by multiple factors and lithological accumulations are more likely to form in trough areas.It further documents the three main factors controlling the formation of large lithological hydrocarbon accumulations in trough areas.The paper also discusses the new concept that structural and lithological accumulations not only co-exist but also complement each other.We propose that fan-delta fronts on inverted steep slopes in troughs,delta fronts and sublacustrine fans on gentle slopes,channel sands along toes of fault scarps are favorable locations for discovery of new oil accumulations.The application of this concept has led to the discovery of several hundreds of million tonnes of oil in place in trough areas in the Jizhong Depression and the Erlian Basin.