The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence.These vibrations are in six degrees of freedom and cause line-of-sight jitters,resulting i...The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence.These vibrations are in six degrees of freedom and cause line-of-sight jitters,resulting in image blurring and loss of tracking accuracy.In this paper,a Hexapod Vibration Isolation System(HVIS)is proposed and optimized to solve this problem.The optimization aims to centralize and minimize the natural frequencies of HVIS,for expanding the vibration isolation bandwidth and improving the vibration isolation in the higher frequency band.Considering that the design space for HVIS is limited and interfered with the frames of the mobile platform,a non-collision algorithm is proposed and applied in the optimization to obtain the feasible optimal design.The optimization result shows that the natural frequency bandwidth has been reduced by 42.9%,and the maximum natural frequency is reduced by 30.2%.The prototypes of initial and optimal designs are manufactured and tested.Both simulated and experimental results demonstrate the validity of the optimization,and the optimal design provides a maximum of 15 dB more isolation in rotation direction than the initial design.展开更多
Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band lim...Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band limitation are determined directly by the electro-optic crystal and duration of the probe laser pulse.Here,we investigate the performance of the EOS with thin GaSe crystal in the measurement of the mid-infrared few-cycle la⁃ser pulse.The shift of the central frequency and change of the bandwidth induced by the EOS detection are calcu⁃lated,and then the pulse distortions induced in this detection process are discussed.It is found that this technique produces a red-shift of the central frequency and narrowing of the bandwidth.These changings decrease when the laser wavelength increases from 2μm to 10μm.This work can help to estimate the performance of the EOS de⁃tection technique in the mid-infrared band and offer a reference for the related experiment as well.展开更多
A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the ...A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.展开更多
Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopan...Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.展开更多
The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits s...The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits stable bipolar resistive switching characteristic, good retention performance, and reversal characteristic. Under different pulse voltages and light fields, four stable resistance states can also be realized. The analysis shows that the main conduction mechanism of the resistive switching characteristic of the heterojunction is space charge limited current(SCLC) effect. After the comprehensive analysis of the band diagram and the P–E ferroelectric property of the multilayer heterojunction, we can deduce that the SCLC is formed by the effect of the oxygen vacancy which is controlled by ferroelectric polarizationmodulated change of interfacial barrier. And the effective photo-generated carrier also plays a regulatory role in resistance state(RS), which is formed by the double ferroelectric layer Ba TiO3/BiFeO3 under different light fields. This research is of potential application values for developing the multi-state non-volatile resistance random access memory(RRAM) devices based on ferroelectric materials.展开更多
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switch...We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.展开更多
Transparent relaxor ferroelectric ceramics of the system lanthanum modified lead magnesium niobate have been investigated for a variety of electro-optic properties could make these materials alternatives to (Pb,La)(Zr...Transparent relaxor ferroelectric ceramics of the system lanthanum modified lead magnesium niobate have been investigated for a variety of electro-optic properties could make these materials alternatives to (Pb,La)(Zr,Ti)O3. However, a study that relates the properties in function stoichiometric formula, it has not been analyzed heretofore. Therefore, in this work the effect of A-site substitution of La+3 in the characterization microstructural, structural, optical and electro-optical on (1-x)[Pb(1-3/2y)Lay(Mg1/3Nb2/3)O3]-xPbTiO3 and (1-z)[(1-x)Pb(Mg1/3Nb2/3)O3+xPbTiO3]+zLa2O3 has been performed. It was observed that the properties according to the stoichiometric formula and the PT had a maximum whose behavior was related to the addition of lanthanum in each stoichiometries.展开更多
In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a ne...In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a new concept of plasma generation: a planar coil is coupled to an RF system for plasma generation. This was used together with an electrostatic shield, for plasma densification, thereby obtaining high-density plasmas. The carbon nanotubes were deposited using pure methane plasmas. Three methods were used for the surface modification of the sample: reference substrate (silicon wafer only submitted to a chemical cleaning), silicon wafer with surface roughness generated by plasma etching, silicon wafer with a thin iron film and silicon wafer with diamond nano powder used as precursor materials. For each kind of silicon wafer surface, the carbon nanotubes were deposited with two different deposition times (two and three hours). The carbon nanotubes structural characteristics were analyzed by Atomic Force Microscope and Scanning Electronic Microscope. The carbon nanotubes electrical characteristics were observed by Raman Spectroscopy and the carbon nanotubes electro-optical properties were analyzed by current vs voltage electrical measurements and photo-luminescence spectroscopy measurements. The photoelectric effect in the carbon nanotubes were determined by photo-induced current measurements. In this work, we obtained carbon nanotubes with semiconductor properties and carbon nanotubes with metallic properties. The electro-optical effects depend strongly on the substrate preparation and the deposition parameters of the carbon nanotubes. The carbon nanotubes are high aligned and show singular properties that can be used for many applications.展开更多
Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of thi...Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.展开更多
Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain...Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain. Dielectric relaxation study and electro-optical measurements are carried out with the classical SSFLC geometry. The field-induced phase transitions are studied and the(E,T) phase diagram is established.展开更多
A bunch arrival-time monitor(BAM) based on an electro-optical intensity modulation scheme is currently under development at Shanghai Soft X-ray Free-Electron Laser to meet the high-resolution requirements for bunch st...A bunch arrival-time monitor(BAM) based on an electro-optical intensity modulation scheme is currently under development at Shanghai Soft X-ray Free-Electron Laser to meet the high-resolution requirements for bunch stability. The BAM uses a radio frequency signal generated by a pickup cavity to modulate the reference laser pulses in an electro-optical intensity modulator(EOM), and the bunch arrival-time information is derived from the amplitude change of the laser pulse after laser pulse modulation.EOM is a key optical component in the BAM system.Through the basic principle analysis of BAM, many parameters of the EOM are observed to affect the measurement resolution of the BAM system. Therefore, a systematic analysis of the EOM is crucial. In this paper, we present two schemes to compare and analyze an EOM and provide a reference for selecting a new version of the EOM.展开更多
The liquid crystal composite materials consist of microdroplets of liquid crystals which are spontaneously formed in a matrix of a polymer at the time of its polymerization. The director configuration in liquid crysta...The liquid crystal composite materials consist of microdroplets of liquid crystals which are spontaneously formed in a matrix of a polymer at the time of its polymerization. The director configuration in liquid crystal droplets, the model of orientation of droplets, and the contrast ratios of a cell are investigated. Droplet size, spacing and distribution are readily controlled in these materials to allow optimization of displays based upon electrically controlled light scattering from the liquid crystal droplets. Preliminary experimental and theoretical studies of the light scattering and electro-optic response of new material show that these materials can offer new features suitable for large area displays and light valves.展开更多
Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integr...Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integration compared with conventional bulk lithium niobate modulator.However,because the electrode gap of the lithium niobate film modulator is very narrow,when the microwave frequency gets higher,it leads to higher microwave loss,and the electro-optical performance of the modulator will be greatly reduced.Here,we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz,exhibiting a voltage-length product of 1.1 V·cm and a 3 dB electro-optic bandwidth greater than 160 GHz.High-speed data transmission test has been performed,showing good performance.展开更多
The fluorine-containing organic polymer was synthesized from 3, 3', 4, 4'-Bisphenyltetracarboxylic (BPDA), and 2,2-Bis (3-amino-4-hydroxyyphenyl) hexafluoropropane (6FHP). It is a first-step preparation of a p...The fluorine-containing organic polymer was synthesized from 3, 3', 4, 4'-Bisphenyltetracarboxylic (BPDA), and 2,2-Bis (3-amino-4-hydroxyyphenyl) hexafluoropropane (6FHP). It is a first-step preparation of a preimided hydroxy-containing polyimide, followed by the covalent bonding of an active chromophore, dispersed red 19 (DR19), onto the backbone of the polyimide via the Mitsunobu reaction. The nonlinear optical (NLO) containing polyimide was synthesized. The differential scanning calorimeter (DSC)and thermal gravimetric analysis (TGA) exhibited Tg and the temperature Tg at which 5 % mass losses occurring of polymer were 248 and 309 ℃, respectively. A reflective electro-optic (EO) modulator using this polymer was fabricated. The optical nonlinearities were determined to be d33 = 5. 209×10^-9 esu (poling voltage of 3.6 kV, 205 ℃) and d33 =7. 418×10^-9esu (poling voltage of 3. 8 kV, 210 ℃) by the second harmonic generation method in in-situ condition at a fundamental wavelength of 1 064 nm. The EO coefficients 733 of the polymer layer in the EO modulator were determined to be 2. 182 pm/V (poling voltage of 3.6 kV, 205 ℃) and 3. 107 pm/V (poling voltage of 3.8 kV, 210 ℃) at 1064 nm by an attenuated-total-reflection (ATR) method.展开更多
We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded...We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.展开更多
Single-wavelength interferometry achieves high resolution for smooth surfaces but struggles with rough industrially relevant ones due to limited unambiguous measuring range and speckle effects.Multiwavelength interfer...Single-wavelength interferometry achieves high resolution for smooth surfaces but struggles with rough industrially relevant ones due to limited unambiguous measuring range and speckle effects.Multiwavelength interferometry addresses these challenges using synthetic wavelengths,enabling a balance between extended measurement range and resolution by combining several synthetic wavelengths.This approach holds immense potential for diverse industrial applications,yet it remains largely untapped due to the lack of suitable light sources.Existing solutions are constrained by limited flexibility in synthetic-wavelength generation and slow switching speeds.We demonstrate a light source for multiwavelength interferometry based on electro-optic single-sideband modulation.It reliably generates synthetic wavelengths with arbitrary values from centimeters to meters and switching time below 30 ms.This breakthrough paves the way for dynamic reconfigurable multiwavelength interferometry capable of adapting to complex surfaces and operating efficiently even outside laboratory settings.These capabilities unlock the full potential of multiwavelength interferometry,offering unprecedented flexibility and speed for industrial and technological applications.展开更多
Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quali...Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quality etching of these thin films,necessitating the long-term development of the fabrication recipe and specialized equipment.Here we present a strong-confinement low-index-rib-loaded waveguide structure as the building block of various passive and active integrated photonic devices based on novel thin films.By optimizing this low-index-rib-loaded waveguide structure without etching the novel thin film,we can simultaneously realize strong optical power confinement in the thin film,low optical propagation loss,and strong electro-optic coupling for the fundamental transverse electric mode.Based on our low-index-rib-loaded waveguide structure,we designed and fabricated a thin film lithium niobate(TFLN)modulator,featuring a 3-dB modulation bandwidth over 110 GHz and a voltage-length product as low as 2.26 V·cm,which is comparable to those of the state-of-the-art etched TFLN modulators.By alleviating the etching of novel thin films,the proposed structure opens up new ways of fast proof-of-concept demonstration and even mass production of high-performance integrated electro-optic and nonlinear devices based on novel thin films.展开更多
Electro-optical tracking systems have been widely used in the cutting-edge domains of free space environment detection and communication owing to their exceptional performance.However,external disturbances often signi...Electro-optical tracking systems have been widely used in the cutting-edge domains of free space environment detection and communication owing to their exceptional performance.However,external disturbances often significantly impact the working accuracy of these systems.As their scope of application continues to broaden,increasingly complex operating conditions introduce more intricate environments and disturbances.This paper introduces a composite control structure of an enhanced error-based observer,rooted in the repetitive control strategy,tailored for two types of complex disturbances:periodic harmonic disturbance and narrow-band peak periodic disturbance.This structure not only ensures the system's stability,but also suppresses periodic disturbances across multiple frequencies,effectively addressing the challenge that current disturbance suppression methods face in mitigating complex periodic disturbances.Moreover,necessary proofs are provided and an experimental platform is established for the electro-optical system,demonstrating the efficacy and reliability of the proposed control methods under various conditions.展开更多
Tunable mid-infrared lasers are essential for optical sensing and imaging.Existing technologies,however,face challenges in simultaneously achieving broadband spectral tunability and ultra-rapid scan rates,limiting the...Tunable mid-infrared lasers are essential for optical sensing and imaging.Existing technologies,however,face challenges in simultaneously achieving broadband spectral tunability and ultra-rapid scan rates,limiting their utility in dynamic scenarios such as real-time characterization of multiple molecular absorption bands.We present a high-speed approach for broadband wavelength sweeping in the mid-infrared region,leveraging spectral focusing via difference-frequency generation between a chirped fiber laser and an asynchronous,frequency-modulated electro-optic comb.This method enables pulse-to-pulse spectral tuning at a speed of 5.6 THz∕μs with 380 elements.Applied to spectroscopic sensing,our technique achieves broad spectral coverage(2600 to 3780 cm−1)with moderate spectral resolution(8 cm−1)and rapid acquisition time(-6.3μs).Notably,the controllable electro-optic comb facilitates high scan rates of up to 2 Mscans∕s across the full spectral range(corresponding to a speed of 60 THz∕μs),with trade-offs in number of elements(-30)and spectral point spacing or resolution(33 cm−1).Nevertheless,these capabilities make our platform highly promising for applications such as flow cytometry,chemical reaction monitoring,and mid-infrared ranging and imaging.展开更多
A Mach-Zehnder(MZ) electro-optic(EO) modulator are real iz ed,with three optical layers as polymer materials.The functional layer is the co rona poled crosslinkable polyurethane.The ridge waveguide is fabricated by us...A Mach-Zehnder(MZ) electro-optic(EO) modulator are real iz ed,with three optical layers as polymer materials.The functional layer is the co rona poled crosslinkable polyurethane.The ridge waveguide is fabricated by using the spin-coating,poling,photolithography and oxygen reactive ion etching(RIE) techniques.The mode and the modulation properties of these devices are demonstra ted in a micron control system,while the light source works at the wavelength of 1 31 or 1 55 micron.展开更多
基金supported by the National Key R&D Program of China(No.2021YFA1003503)。
文摘The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence.These vibrations are in six degrees of freedom and cause line-of-sight jitters,resulting in image blurring and loss of tracking accuracy.In this paper,a Hexapod Vibration Isolation System(HVIS)is proposed and optimized to solve this problem.The optimization aims to centralize and minimize the natural frequencies of HVIS,for expanding the vibration isolation bandwidth and improving the vibration isolation in the higher frequency band.Considering that the design space for HVIS is limited and interfered with the frames of the mobile platform,a non-collision algorithm is proposed and applied in the optimization to obtain the feasible optimal design.The optimization result shows that the natural frequency bandwidth has been reduced by 42.9%,and the maximum natural frequency is reduced by 30.2%.The prototypes of initial and optimal designs are manufactured and tested.Both simulated and experimental results demonstrate the validity of the optimization,and the optimal design provides a maximum of 15 dB more isolation in rotation direction than the initial design.
基金Supported by the National Natural Science Foundation of China(12064028)Jiangxi Provincial Natural Science Foundation(20232BAB201045).
文摘Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band limitation are determined directly by the electro-optic crystal and duration of the probe laser pulse.Here,we investigate the performance of the EOS with thin GaSe crystal in the measurement of the mid-infrared few-cycle la⁃ser pulse.The shift of the central frequency and change of the bandwidth induced by the EOS detection are calcu⁃lated,and then the pulse distortions induced in this detection process are discussed.It is found that this technique produces a red-shift of the central frequency and narrowing of the bandwidth.These changings decrease when the laser wavelength increases from 2μm to 10μm.This work can help to estimate the performance of the EOS de⁃tection technique in the mid-infrared band and offer a reference for the related experiment as well.
文摘A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.
基金Project partially supported by the National Natural Science Foundation of China (Grant Nos. 60736042, 60578035 and 50703039) and the Science Foundation of Jilin Province of China (Grant Nos. 20050520 and 20050321-2).
文摘Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.
基金Project supported by the Scientific Research Program of Hunan Provincial Education Department,China(Grant No.18C0232)the International Cooperative Extension Program of Changsha University of Science and Technology,China(Grant No.2019IC35)
文摘The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits stable bipolar resistive switching characteristic, good retention performance, and reversal characteristic. Under different pulse voltages and light fields, four stable resistance states can also be realized. The analysis shows that the main conduction mechanism of the resistive switching characteristic of the heterojunction is space charge limited current(SCLC) effect. After the comprehensive analysis of the band diagram and the P–E ferroelectric property of the multilayer heterojunction, we can deduce that the SCLC is formed by the effect of the oxygen vacancy which is controlled by ferroelectric polarizationmodulated change of interfacial barrier. And the effective photo-generated carrier also plays a regulatory role in resistance state(RS), which is formed by the double ferroelectric layer Ba TiO3/BiFeO3 under different light fields. This research is of potential application values for developing the multi-state non-volatile resistance random access memory(RRAM) devices based on ferroelectric materials.
文摘We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.
基金CAPES,FAPESP and CNPq for the financial support.
文摘Transparent relaxor ferroelectric ceramics of the system lanthanum modified lead magnesium niobate have been investigated for a variety of electro-optic properties could make these materials alternatives to (Pb,La)(Zr,Ti)O3. However, a study that relates the properties in function stoichiometric formula, it has not been analyzed heretofore. Therefore, in this work the effect of A-site substitution of La+3 in the characterization microstructural, structural, optical and electro-optical on (1-x)[Pb(1-3/2y)Lay(Mg1/3Nb2/3)O3]-xPbTiO3 and (1-z)[(1-x)Pb(Mg1/3Nb2/3)O3+xPbTiO3]+zLa2O3 has been performed. It was observed that the properties according to the stoichiometric formula and the PT had a maximum whose behavior was related to the addition of lanthanum in each stoichiometries.
文摘In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a new concept of plasma generation: a planar coil is coupled to an RF system for plasma generation. This was used together with an electrostatic shield, for plasma densification, thereby obtaining high-density plasmas. The carbon nanotubes were deposited using pure methane plasmas. Three methods were used for the surface modification of the sample: reference substrate (silicon wafer only submitted to a chemical cleaning), silicon wafer with surface roughness generated by plasma etching, silicon wafer with a thin iron film and silicon wafer with diamond nano powder used as precursor materials. For each kind of silicon wafer surface, the carbon nanotubes were deposited with two different deposition times (two and three hours). The carbon nanotubes structural characteristics were analyzed by Atomic Force Microscope and Scanning Electronic Microscope. The carbon nanotubes electrical characteristics were observed by Raman Spectroscopy and the carbon nanotubes electro-optical properties were analyzed by current vs voltage electrical measurements and photo-luminescence spectroscopy measurements. The photoelectric effect in the carbon nanotubes were determined by photo-induced current measurements. In this work, we obtained carbon nanotubes with semiconductor properties and carbon nanotubes with metallic properties. The electro-optical effects depend strongly on the substrate preparation and the deposition parameters of the carbon nanotubes. The carbon nanotubes are high aligned and show singular properties that can be used for many applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378075,61377032,11604327,and 61475152)the Science Foundation of State Key Laboratory of Applied Optics,China
文摘Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.
文摘Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain. Dielectric relaxation study and electro-optical measurements are carried out with the classical SSFLC geometry. The field-induced phase transitions are studied and the(E,T) phase diagram is established.
基金supported by the National Key R&D Plan(No.2016YFA0401900)
文摘A bunch arrival-time monitor(BAM) based on an electro-optical intensity modulation scheme is currently under development at Shanghai Soft X-ray Free-Electron Laser to meet the high-resolution requirements for bunch stability. The BAM uses a radio frequency signal generated by a pickup cavity to modulate the reference laser pulses in an electro-optical intensity modulator(EOM), and the bunch arrival-time information is derived from the amplitude change of the laser pulse after laser pulse modulation.EOM is a key optical component in the BAM system.Through the basic principle analysis of BAM, many parameters of the EOM are observed to affect the measurement resolution of the BAM system. Therefore, a systematic analysis of the EOM is crucial. In this paper, we present two schemes to compare and analyze an EOM and provide a reference for selecting a new version of the EOM.
文摘The liquid crystal composite materials consist of microdroplets of liquid crystals which are spontaneously formed in a matrix of a polymer at the time of its polymerization. The director configuration in liquid crystal droplets, the model of orientation of droplets, and the contrast ratios of a cell are investigated. Droplet size, spacing and distribution are readily controlled in these materials to allow optimization of displays based upon electrically controlled light scattering from the liquid crystal droplets. Preliminary experimental and theoretical studies of the light scattering and electro-optic response of new material show that these materials can offer new features suitable for large area displays and light valves.
基金supported by the Self-deployment Project of Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZZ104)the Fujian Province STS Project(Nos.2020T3002 and 2022T3012)。
文摘Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integration compared with conventional bulk lithium niobate modulator.However,because the electrode gap of the lithium niobate film modulator is very narrow,when the microwave frequency gets higher,it leads to higher microwave loss,and the electro-optical performance of the modulator will be greatly reduced.Here,we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz,exhibiting a voltage-length product of 1.1 V·cm and a 3 dB electro-optic bandwidth greater than 160 GHz.High-speed data transmission test has been performed,showing good performance.
基金Jiangsu Planned Projects for Postdoctoral ResearchFunds(No0602037B)the Natural Science Foundation of Higher Edu-cation Institutions of Jiangsu Province (No05KJB150016)+1 种基金the Nation-al Natural Science Foundation of China (No50377005)the Fund ofJiangsu University (No06JDG015)
文摘The fluorine-containing organic polymer was synthesized from 3, 3', 4, 4'-Bisphenyltetracarboxylic (BPDA), and 2,2-Bis (3-amino-4-hydroxyyphenyl) hexafluoropropane (6FHP). It is a first-step preparation of a preimided hydroxy-containing polyimide, followed by the covalent bonding of an active chromophore, dispersed red 19 (DR19), onto the backbone of the polyimide via the Mitsunobu reaction. The nonlinear optical (NLO) containing polyimide was synthesized. The differential scanning calorimeter (DSC)and thermal gravimetric analysis (TGA) exhibited Tg and the temperature Tg at which 5 % mass losses occurring of polymer were 248 and 309 ℃, respectively. A reflective electro-optic (EO) modulator using this polymer was fabricated. The optical nonlinearities were determined to be d33 = 5. 209×10^-9 esu (poling voltage of 3.6 kV, 205 ℃) and d33 =7. 418×10^-9esu (poling voltage of 3. 8 kV, 210 ℃) by the second harmonic generation method in in-situ condition at a fundamental wavelength of 1 064 nm. The EO coefficients 733 of the polymer layer in the EO modulator were determined to be 2. 182 pm/V (poling voltage of 3.6 kV, 205 ℃) and 3. 107 pm/V (poling voltage of 3.8 kV, 210 ℃) at 1064 nm by an attenuated-total-reflection (ATR) method.
文摘We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.
基金supported by the German Federal Ministry of Education and Research,Research Program Quantum Systems(Grant No.13N16774).
文摘Single-wavelength interferometry achieves high resolution for smooth surfaces but struggles with rough industrially relevant ones due to limited unambiguous measuring range and speckle effects.Multiwavelength interferometry addresses these challenges using synthetic wavelengths,enabling a balance between extended measurement range and resolution by combining several synthetic wavelengths.This approach holds immense potential for diverse industrial applications,yet it remains largely untapped due to the lack of suitable light sources.Existing solutions are constrained by limited flexibility in synthetic-wavelength generation and slow switching speeds.We demonstrate a light source for multiwavelength interferometry based on electro-optic single-sideband modulation.It reliably generates synthetic wavelengths with arbitrary values from centimeters to meters and switching time below 30 ms.This breakthrough paves the way for dynamic reconfigurable multiwavelength interferometry capable of adapting to complex surfaces and operating efficiently even outside laboratory settings.These capabilities unlock the full potential of multiwavelength interferometry,offering unprecedented flexibility and speed for industrial and technological applications.
基金financial supports from National Key Research and Development Program of China (2021YFA1401000)National Natural Science Foundation of China (62435009)+2 种基金Beijing Municipal Natural Science Foundation (Z220008)Zhuhai Industry University Research Collaboration Project (ZH-2201700121010)supported by the Center of High Performance Computing,Tsinghua University
文摘Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quality etching of these thin films,necessitating the long-term development of the fabrication recipe and specialized equipment.Here we present a strong-confinement low-index-rib-loaded waveguide structure as the building block of various passive and active integrated photonic devices based on novel thin films.By optimizing this low-index-rib-loaded waveguide structure without etching the novel thin film,we can simultaneously realize strong optical power confinement in the thin film,low optical propagation loss,and strong electro-optic coupling for the fundamental transverse electric mode.Based on our low-index-rib-loaded waveguide structure,we designed and fabricated a thin film lithium niobate(TFLN)modulator,featuring a 3-dB modulation bandwidth over 110 GHz and a voltage-length product as low as 2.26 V·cm,which is comparable to those of the state-of-the-art etched TFLN modulators.By alleviating the etching of novel thin films,the proposed structure opens up new ways of fast proof-of-concept demonstration and even mass production of high-performance integrated electro-optic and nonlinear devices based on novel thin films.
文摘Electro-optical tracking systems have been widely used in the cutting-edge domains of free space environment detection and communication owing to their exceptional performance.However,external disturbances often significantly impact the working accuracy of these systems.As their scope of application continues to broaden,increasingly complex operating conditions introduce more intricate environments and disturbances.This paper introduces a composite control structure of an enhanced error-based observer,rooted in the repetitive control strategy,tailored for two types of complex disturbances:periodic harmonic disturbance and narrow-band peak periodic disturbance.This structure not only ensures the system's stability,but also suppresses periodic disturbances across multiple frequencies,effectively addressing the challenge that current disturbance suppression methods face in mitigating complex periodic disturbances.Moreover,necessary proofs are provided and an experimental platform is established for the electro-optical system,demonstrating the efficacy and reliability of the proposed control methods under various conditions.
基金supported by the Innovation Program for Quantum Science and Technology(Grant No.2023ZD0301000)the Chongqing Technology Innovation and Application Develop-ment Project(Grant No.CSTB2022TIAD-DEX0031).
文摘Tunable mid-infrared lasers are essential for optical sensing and imaging.Existing technologies,however,face challenges in simultaneously achieving broadband spectral tunability and ultra-rapid scan rates,limiting their utility in dynamic scenarios such as real-time characterization of multiple molecular absorption bands.We present a high-speed approach for broadband wavelength sweeping in the mid-infrared region,leveraging spectral focusing via difference-frequency generation between a chirped fiber laser and an asynchronous,frequency-modulated electro-optic comb.This method enables pulse-to-pulse spectral tuning at a speed of 5.6 THz∕μs with 380 elements.Applied to spectroscopic sensing,our technique achieves broad spectral coverage(2600 to 3780 cm−1)with moderate spectral resolution(8 cm−1)and rapid acquisition time(-6.3μs).Notably,the controllable electro-optic comb facilitates high scan rates of up to 2 Mscans∕s across the full spectral range(corresponding to a speed of 60 THz∕μs),with trade-offs in number of elements(-30)and spectral point spacing or resolution(33 cm−1).Nevertheless,these capabilities make our platform highly promising for applications such as flow cytometry,chemical reaction monitoring,and mid-infrared ranging and imaging.
文摘A Mach-Zehnder(MZ) electro-optic(EO) modulator are real iz ed,with three optical layers as polymer materials.The functional layer is the co rona poled crosslinkable polyurethane.The ridge waveguide is fabricated by using the spin-coating,poling,photolithography and oxygen reactive ion etching(RIE) techniques.The mode and the modulation properties of these devices are demonstra ted in a micron control system,while the light source works at the wavelength of 1 31 or 1 55 micron.