期刊文献+
共找到11,875篇文章
< 1 2 250 >
每页显示 20 50 100
Cumulative thermal coupling modeling and analysisof oil-immersed motor-pump assembly forelectro–hydrostatic actuator 被引量:1
1
作者 Siming FAN Shaoping WANG +3 位作者 Qiyang WANG Xingjian WANG Di LIU Xiao WU 《Chinese Journal of Aeronautics》 2025年第5期394-410,共17页
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ... The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety. 展开更多
关键词 Electro-hydrostatic actuator Oil-immersed motor-pump Dynamic thermal coupling model Heat transfer Heat accumulation
原文传递
Computational Modeling of the Prefrontal-Cingulate Cortex to Investigate the Role of Coupling Relationships for Balancing Emotion and Cognition
2
作者 Jinzhao Wei Licong Li +3 位作者 Jiayi Zhang Erdong Shi Jianli Yang Xiuling Liu 《Neuroscience Bulletin》 2025年第1期33-45,共13页
Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite ... Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression. 展开更多
关键词 Prefrontal-cingulate cortex Computational modeling coupling relationships DEPRESSION Emotion and cognition
原文传递
Optimal Coupling Height of the Atmosphere and Land Surface——An Earth System Modeling Perspective
3
作者 Shaofeng LIU Xubin ZENG +6 位作者 Yongjiu DAI Hua YUAN Nan WEI Zhongwang WEI Xingjie LU Shupeng ZHANG Michael A.BRUNKE 《Advances in Atmospheric Sciences》 2025年第3期417-426,共10页
In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the... In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the atmosphere.However,the dependence of flux computation on the reference height,which is usually set as the lowest level in the atmosphere in Earth system models,has not received much attention.Based on high-resolution large-eddy simulation(LES)data under unstable conditions,we find the setting of reference height is not trivial within the framework of current surface layer theory.With a reasonable prescription of aerodynamic roughness length(following the setting in LESs),reference heights near the top of the surface layer tend to provide the best estimate of surface fluxes,especially for the momentum flux.Furthermore,this conclusion for the sensible heat flux is insensitive to the ratio of roughness length for momentum versus heat.These results are robust,whether using the classical or revised surface layer theory.They provide a potential guide for setting the proper reference heights for Earth system modeling and can be further tested in the near future using observational data from land–atmosphere feedback observatories. 展开更多
关键词 surface flux estimate reference height land surface modeling atmosphere-land surface coupling large-eddy simulation
在线阅读 下载PDF
Failure microscopic mechanism and damage constitutive model of dolomite under water-rock coupling interaction
4
作者 SUN Xiao-ming ZHANG Jing +6 位作者 SHI Fu-kun HE Lin-sen ZHANG Yong MIAO Cheng-yu DING Jia-xu MA Li-sha ZHAO Hao-ze 《Journal of Central South University》 2025年第4期1431-1446,共16页
To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings rev... To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability. 展开更多
关键词 water-rock coupling DOLOMITE constitutive model MICROSTRUCTURE loading-unloading cycle
在线阅读 下载PDF
A review of thermo-hydro-mechanical modeling of coupled processes in fractured rock:From continuum to discontinuum perspective
5
作者 Iman Vaezi Keita Yoshioka +11 位作者 Silvia De Simone Berta María Gómez-Castro Adriana Paluszny Mohammadreza Jalali Inga Berre Jonny Rutqvist Ki-Bok Min Qinghua Lei Roman Y.Makhnenko Mengsu Hu Chin-Fu Tsang Victor Vilarrasa 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7460-7488,共29页
Coupled thermo-hydro-mechanical(THM)processes in fractured rock are playing a crucial role in geoscience and geoengineering applications.Diverse and conceptually distinct approaches have emerged over the past decades ... Coupled thermo-hydro-mechanical(THM)processes in fractured rock are playing a crucial role in geoscience and geoengineering applications.Diverse and conceptually distinct approaches have emerged over the past decades in both continuum and discontinuum perspectives leading to significant progress in their comprehending and modeling.This review paper offers an integrated perspective on existing modeling methodologies providing guidance for model selection based on the initial and boundary conditions.By comparing various models,one can better assess the uncertainties in predictions,particularly those related to the conceptual models.The review explores how these methodologies have significantlyenhanced the fundamental understanding of how fractures respond to fluid injection and production,and improved predictive capabilities pertaining to coupled processes within fractured systems.It emphasizes the importance of utilizing advanced computational technologies and thoroughly considering fundamental theories and principles established through past experimental evidence and practical experience.The selection and calibration of model parameters should be based on typical ranges and applied to the specificconditions of applications.The challenges arising from inherent heterogeneity and uncertainties,nonlinear THM coupled processes,scale dependence,and computational limitations in representing fieldscale fractures are discussed.Realizing potential advances on computational capacity calls for methodical conceptualization,mathematical modeling,selection of numerical solution strategies,implementation,and calibration to foster simulation outcomes that intricately reflectthe nuanced complexities of geological phenomena.Future research efforts should focus on innovative approaches to tackle the hurdles and advance the state-of-the-art in this critical fieldof study. 展开更多
关键词 Fractured rock Fracture representation coupling scheme Fracture mechanics Numerical modeling
在线阅读 下载PDF
Modeling and Oscillation Suppression for a Rigid-flexible Coupled Tail in a Crocodile-inspired Robot During Terrestrial Locomotion
6
作者 Zhiqin Zhuo Wenzhen Jia +3 位作者 Mengxiang Fang Qin Zeng Jianing Wu Jianping Jiang 《Journal of Bionic Engineering》 2025年第6期2965-2979,共15页
Inspired by the crucial role of the tail in crocodile locomotion,we propose a novel rigid-flexible coupled tail structure design.The tail design reduces the number of required actuators,enables undulatory propulsion i... Inspired by the crucial role of the tail in crocodile locomotion,we propose a novel rigid-flexible coupled tail structure design.The tail design reduces the number of required actuators,enables undulatory propulsion in swimming,and provides additional support during terrestrial crawling.However,when the tail lifts off the ground during land crawling,its flexible underactuated structure tends to oscillate randomly due to minimal damping.These oscillations impart disruptive reaction torques to the body,critically impairing locomotion stability.To tackle this issue,we employed the standard Denavit-Hartenberg(DH)method and Newton-Euler equations to formulate a rigid-flexible coupled dynamic model for the tail,in which distributed elastic forces are embedded as internal forces in the force balance equations.Based on this model,we propose an oscillation suppression strategy based on an energy-optimized Nonlinear Model Predictive Controller(NMPC)with a single joint torque as the control input.This controller solves a constrained multi-objective optimization problem to effectively suppress the underactuated oscillations of the tail.Finally,experimental comparisons validate the accuracy of the dynamic model,and simulations based on this model substantiate the effectiveness of the oscillation suppression strategy. 展开更多
关键词 Rigid-flexible coupling structure Crocodile-inspired robot tail Underactuated oscillation suppression Nonlinear model predictive control(NMPC) Dynamic modeling
在线阅读 下载PDF
New insights on generalized heat conduction and thermoelastic coupling models
7
作者 Yue HUANG Lei YAN +1 位作者 Hua WU Yajun YU 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1533-1550,共18页
With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi... With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory. 展开更多
关键词 generalized heat conduction thermoelastic coupling transient response generalized Cattaneo-Vernotte(CV)model generalized Green-Naghdi(GN)model
在线阅读 下载PDF
Simulation of the future evolution track of“production-living-ecological”space in a coastal city based on multimodel coupling and wetland protection scenarios
8
作者 Yitong Yin Rongjin Yang +5 位作者 Zechen Song Yuying Zhang Yanrong Lu Le Zhang Meiying Sun Xiuhong Li 《Geography and Sustainability》 2025年第3期51-63,共13页
Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con... Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con-flicts among production,living and ecological land are prevalent in coastal cities in the process of maintaining sustainable wetland resources and further developing the social economy.By establishing an SD-PLUS-CCD cou-pling model,this paper analysed the evolution characteristics and driving mechanism of the production-living-ecological space(PLES)and the effects of wetland protection(WLP)on promoting or inhibiting the coordinated development of the PLES in Dongying city during 2005-2060.The results show that(1)from 2005 to 2020,the increase in urban population resulted in a significant transfer of arable land and a reduction of 914 km2 in pro-duction space(PS);(2)from 2020 to 2060,under the WLP scenario,the conversion of wetland ecological space will reduce the PS and living space(LS)by 193.92 km2 and 107.14 km2,respectively,and increase the ecological space(ES)by 327.52 km2;and(3)wetland protection has an inhibitory effect on the coordinated development of PLES in the study area,and the total proportion of noncoordinated areas of PE and living-ecological space will continue to increase during the simulation period.This paper provides a solid theoretical support for the sustain-able management and protection of wetlands in coastal cities and possible PLES conflict patterns and provides a scientific basis for future territorial spatial planning and policy balance analysis. 展开更多
关键词 Wetland protection “Production-living-ecological”space coupling model Driving mechanism Coordinated and sustainable development
在线阅读 下载PDF
Heat-fluid-solid coupling model for gas-bearing coal seam and numerical modeling on gas drainage promotion by heat injection 被引量:6
9
作者 Ruifu Yuan Chunling Chen +1 位作者 Xiao Wei Xiaojun Li 《International Journal of Coal Science & Technology》 EI 2019年第4期564-576,共13页
Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory... Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory,the nonlinear Darcy seepage theory and thermodynamics,the heat-fluid-solid coupling model for gassy coal has been improved.The numerical model was founded from the improved multi-field coupling model by COMSOL Multiphysics and gas drainage by borehole down the coal seam enhanced by heat injection was modelled.The results show that the heatfluid-solid model with adsorption effects for gassy coal was well simulated by the improved multi-field model.The mechanism of coal seam gas desorption seepage under the combined action of temperature,stress and adsorption can be well described.Gas desorption and seepage can be enhanced by heat injection into coal seams.The gas drainage rate was directly proportional to the temperature of injected heat in the scope of 30-150 ℃ and increasing in the whole modelleddrainage process (0-1000 d).The increased level was maximum in the initial drainage time and decreasing gradually along with drainage time.The increasing ratio of drainage rate was maximum when the temperature raised from 30 to 60 ℃.Although the drainage rate would increase along with increasing temperature,when exceeding 60 ℃,the increasing ratio of drainage rate with rising temperature would decrease.Gas drainage promotion was more effective in coal seams with lower permeability than with higher permeability.The coal seam temperature in a 5 m distance surrounding the heat injection borehole would rise to around 60 ℃ in 3 months.That was much less than the time of gas drainage in the coal mines in sites with low permeability coal seams.Therefore,it is valuable and feasible to inject heat into coal seams to promote gas drainage,and this has strong feasibility for coal seams with low permeability which are widespread in China. 展开更多
关键词 Gassy COAL Heat-fluid-solid coupling model Heat injection GAS extraction Numerical modeling
在线阅读 下载PDF
Numerical simulation of the fluid and flexible rods interaction using a semi-resolved coupling model promoted by anisotropic Gaussian kernel function
10
作者 Caiping Jin Jingxin Zhang Yonglin Sun 《Theoretical & Applied Mechanics Letters》 2025年第1期5-8,共4页
The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computatio... The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model. 展开更多
关键词 Semi-resolved coupling model Two-way domain expansion method Anisotropic Gaussian kernel function Flexible rod(s)
在线阅读 下载PDF
Pore Pressure Evolution and F-T Fatigue of Concrete: A Coupled THM-F Phase-Field Modeling Approach
11
作者 Siwei Zhang Xiaozhou Xia +2 位作者 Xin Gu Meilin Zong Qing Zhang 《Computer Modeling in Engineering & Sciences》 2025年第12期3243-3278,共36页
This study presents a coupled thermo-hydro-mechanical-fatigue(THM-F)model,developed based on variational phase-field fatigue theory,to simulate the freeze-thaw(F-T)damage process in concrete.The fracture phasefield mo... This study presents a coupled thermo-hydro-mechanical-fatigue(THM-F)model,developed based on variational phase-field fatigue theory,to simulate the freeze-thaw(F-T)damage process in concrete.The fracture phasefield model incorporates the F-T fatigue mechanism driven by energy dissipation during the free energy growth stage.Using microscopic inclusion theory,we derive an evolution model of pore size distribution(PSD)for concrete under F-T cycles by treating pore water as columnar inclusions.Drawing upon pore ice crystal theory,calculation models that account for concrete PSD characteristics are established to determine ice saturation,permeability coefficient,and pore pressure.To enhance computational accuracy,a segmented Gaussian integration strategy based on aperture levels is employed.The pore pressure estimation model is applied to assess the frost resistance of concrete with varying air-entraining agent contents,confirming that optimal air-entrainment significantly improves pore structure and lowers the overall freezing point of pore ice.The derived permeability coefficient and pore pressure estimation models are integrated into the THM-F coupled framework,which employs a staggered iterative solution scheme for efficient simulation.Mesoscale numerical examples of concrete demonstrate that the proposed THM-F model effectively captures structural degradation and accurately tracks the procession of F-T-induced fatigue cracks.Validations against experimental measurements,including temperature variations,stress-strain curves,and strain history,shows excellent agreement,underscoring the model’s accuracy and applicability.This study provides a robust theoretical and computational framework for quantitative analysis of coupled F-T-fatigue damage in concrete. 展开更多
关键词 THM-F coupled model the variational phase-field fatigue theory F-T cycles PSD characteristics of concrete permeability coefficient pore pressure
在线阅读 下载PDF
Roll System and Stock's Multi-parameter Coupling Dynamic Modeling Based on the Shape Control of Steel Strip 被引量:3
12
作者 Yang ZHANG Yan PENG +1 位作者 Jianliang SUN Yong ZANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期614-624,共11页
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio... The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip. 展开更多
关键词 Roll system Rolling deformation area coupling dynamic model Mode shape function - Lateraldisplacement function
在线阅读 下载PDF
Safety modeling and simulation of multi-factor coupling heavy-equipment airdrop 被引量:8
13
作者 Zhang Jiuxing Xu Haojun +1 位作者 Zhang Dengcheng Liu Dongliang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1062-1069,共8页
Heavy-equipment airdrop is a highly risky procedure that has a complicated system due to the secluded and complex nature of factors' coupling. As a result, it is difficult to study the modeling and safety simulation ... Heavy-equipment airdrop is a highly risky procedure that has a complicated system due to the secluded and complex nature of factors' coupling. As a result, it is difficult to study the modeling and safety simulation of this system. The dynamic model of the heavy-equipment airdrop is based on the Lagrange analytical mechanics, which has all the degrees of freedom and can accurately pinpoint the real-time coordinates and attitude of the carrier with its cargo. Unfavorable conditions accounted in the factors' models, including aircraft malfunctions and adverse environments, are established from a man-machine-environment perspective. Subsequently, a virtual simulation system for the safety research of the multi-factor coupling heavy-equipment airdrop is developed through MATLAB/Simulink, C language and Flightgear software. To verify the veracity of the theory, the verification model is built based on dynamic software ADAMS. Finally, the emulation is put to the test with the input of realistic accident variables to ascertain its feasibility and validity of this method. 展开更多
关键词 Heavy-equipment airdrop modeling and simulation Multi-body system Multi-factor coupling Safety
原文传递
Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling 被引量:5
14
作者 Xumin GUO Chunliang XIAO +3 位作者 Hui MA Hui LI Xufang ZHANG Bangchun WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第8期1269-1288,共20页
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ... The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering. 展开更多
关键词 parallel liquid-filled pipe(PLFP) dynamic analysis improved frequency modeling and solution fluid-structure interaction(FSI) structure coupling
在线阅读 下载PDF
CFD modeling of reaction and mass transfer through a single pellet: Catalytic oxidative coupling of methane 被引量:1
15
作者 Siavash Seyednejadian Nakisa Yaghobi +1 位作者 Ramin Maghrebi Leila Vafajoo 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第4期356-363,共8页
In this study a mathematical model of a small scale single pellet for the oxidative coupling of methane(OCM)over titanite pervoskite is developed.The method is based on a computational fluid dynamics(CFD)code whic... In this study a mathematical model of a small scale single pellet for the oxidative coupling of methane(OCM)over titanite pervoskite is developed.The method is based on a computational fluid dynamics(CFD)code which known as Fluent may be adopted to model the reactions that take place inside the porous catalyst pellet.The steady state single pellet model is coupled with a kinetic model and the intra-pellet concentration profiles of species are provided.Subsequent to achieving this goal,a nonlinear reaction network consisting of nine catalytic reactions and one gas phase reaction as an external program is successfully implemented to CFD-code as a reaction term in solving the equations.This study is based on the experimental design which is conducted in a differential reactor with a Sn/BaTiO3 catalyst(7-8 mesh) at atmospheric pressure,GHSV of 12000 h-1,ratio of methane to oxygen of 2,and three different temperatures of 1023,1048 and 1073 K.The modeling results such as selectivity and conversion at the pellet exit are in good agreement with the experimental data.Therefore,it is suggested that to achieve high yield in OCM process the modeling of the single pellet should be considered as the heart of catalytic fixed bed reactor. 展开更多
关键词 catalyst pellet oxidative coupling of methane modeling CFD catalytic reactions ETHANE
在线阅读 下载PDF
Towards Production and Energy Coupling System Modeling and Simulation for Energy Optimization in the Process Industry 被引量:1
16
作者 戴毅茹 王坚 《Journal of Donghua University(English Edition)》 EI CAS 2011年第2期128-133,共6页
The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of ... The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of energy flow can be analyzed and optimized in the process industry. In order to study this system, the component based hybrid Petri net methodology (CpnHPN) is proposed, synthesizing a number of extended Petri net methods and using the concept of energy place, material place, and information place. Through the interface place in CpnHPN, the component based encapsulation is established, which enables the production and energy coupling system to be built, analyzed, and optimized on the multi-level framework. Considering the block and brief simulation for hybrid system, the CpnHPN model is simulated with Simulink/Stateflow. To illustrate the use of the proposed methodology, the application of CpnHPN in the energy optimization of chlorine balance system is provided. 展开更多
关键词 process INDUSTRY ENERGY optimization PRODUCTION and ENERGY coupling system PETRI NET modeling simulation
在线阅读 下载PDF
Decoupling Conditions for Elasto-plastic Consolidation Question Based on Numerical Modeling Method 被引量:1
17
作者 Cheng Tao Wang Jingtao Dong Bichang 《Journal of China University of Geosciences》 SCIE CSCD 2005年第4期363-368,共6页
Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applie... Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applied to Blot's consolidation theory. Incremental governing partial differential equations are established using this method. According to the stress path, the decoupling condition of these equations is discussed. Based on these conditions, an incremental diffusion equation and uncoupling governing equations are presented. The method is then applied to numerical analyses of three examples. The results show that (1) the effect of the stress path should be taken into account in the simulation of the soil consolidation question; (2) this decoupling method can predict the evolvement of pore water pressure; (3) the settlement using cam-clay model is less than that using numerical model because of dilatancy. 展开更多
关键词 numerical modeling method Blot's consolidation stress path constitutive model liquisolid coupling decouple incremental diffusion equation dilatancy.
在线阅读 下载PDF
Modeling and Decoupling of Coupling Tasks in Collaborative Development Process of Complicated Electronic Products
18
作者 WANG Xiaofei LIAO Wenhe +3 位作者 GUO Yu WANG Falin PAN Zhihao LIU Daoyuan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第5期868-878,共11页
It is important to improve the development efficiency of decoupling a coupling task package according to the information relevancy relation between development tasks in the collaborative development process of complic... It is important to improve the development efficiency of decoupling a coupling task package according to the information relevancy relation between development tasks in the collaborative development process of complicated electronic products.In order to define the task coupling model in the development process,the weighted directed graph based on the information relevancy is established,and the correspondence between weighted directed graph model and numerical design structure matrix model of coupling tasks is introduced.The task coupling model is quantized,thereby the interactivity matrix of task package is built.A multi-goal task decoupling method based on improved genetic algorithm is proposed to decouple the task coupling model,which transforms the decoupling of task package into a multi-goal optimization issue.Then the improved genetic algorithm is used to solve the interactivity matrix of coupling tasks.Finally,the effectiveness of this decomposition method is proved by using the example of task package decoupling of collaborative development of a radar’s phased array antenna. 展开更多
关键词 TASK coupling model TASK DEcoupling weighted directed graph design structure matrix GENETIC algorithm
在线阅读 下载PDF
THE COUPLING DYNAMICAL MODELING THEORY OF FLEXIBLE MULTIBODY SYSTEM
19
作者 Jiang, LZ Hong, JZ 《Acta Mechanica Solida Sinica》 SCIE EI 1999年第4期365-372,共8页
Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library... Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library' and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams. 展开更多
关键词 coupling displacement coupling dynamical modeling theory large overall motion single direction recursive formulation flexible multibody system
在线阅读 下载PDF
Numerical modeling of influence of thermal flow coupling on flow characteristics of molten steel
20
作者 Fan Junfei Ren Sanbing +3 位作者 Chen Yaxian Zhao Shunli Huang Zongze Zhu Miaoyong 《Baosteel Technical Research》 CAS 2008年第1期51-55,共5页
Using the equation of continuity and the double equation of Navier-Stokes and k-ε, numerical modeling on a single outlet continuous casting tundish has been carried out during the process of non-thermal flow coupling... Using the equation of continuity and the double equation of Navier-Stokes and k-ε, numerical modeling on a single outlet continuous casting tundish has been carried out during the process of non-thermal flow coupling. The flow field distribution inside the tundish was calculated and the viscosity response time was calculated with the mass transfer equation based on the flow field distribution. The flow characteristics of the molten steel inside the tundish were analyzed, with the results of the numerical modeling compared to the hydraulic modeling. The results showed that the Resident Time Distribution (RTD) curves in the latter anatomosed comparatively better. This certified the validity established by the mathematical model. Numerical modeling was carried out on both large and small tundishes during the processes of thermal flow coupling and also thermal non-flow coupling. The results showed that in regards to large tundishes with relatively simple flow processes, using numerical modeling for thermal flow coupling is necessary. 展开更多
关键词 TUNDISH liquid flow thermal flow coupling numerical modeling
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部