期刊文献+
共找到3,412篇文章
< 1 2 171 >
每页显示 20 50 100
Efficiency accounting for the conversion of"Green Mountains and Clear Water"into"Gold and Silver Mountains":An empirical study of Qilian Mountain national park in China
1
作者 Na Wu Xiang Pan +2 位作者 XiaoYu Song RuiDong Zhao YuanGuo Long 《Research in Cold and Arid Regions》 2025年第4期251-260,共10页
The research on the conversion efficiency of"Green Mountains into Clear Water"(Green)and"Gold and silver Mountains"(Gold)is of great significance to promote the coordination between natural resourc... The research on the conversion efficiency of"Green Mountains into Clear Water"(Green)and"Gold and silver Mountains"(Gold)is of great significance to promote the coordination between natural resource conservation in national park and the local economic and social development.This paper pays attention to the linking role of ecosystem services in different stages of the conversion process between the Green and Gold.Based on the twostage division,this paper constructs the accounting framework for conversion efficiency of Green and Gold.That is,the comprehensive conversion efficiency of Green and Gold is decomposed into the I-stage efficiency of ecological inputs conversion to Green and the II-stage efficiency of ecosystem services conversion to economic output.Furthermore,the Qilian Mountain National Park in China and its surrounding area Zhangye City,is taken as an example.Using a two-stage non-oriented super-efficiency network EBM model and panel data from 2007 to 2018 to empirically analysis the dynamic evolution characteristics of the conversion efficiency of Green and Gold.Based on this,the heterogeneity improvement strategy is proposed.The results show that:(1)the comprehensive efficiency of the Two Mountains conversion in Zhangye City decreased first and then increased.The highest was 1.715 in 2007;the lowest was 1.367 in 2012;since 2012,the development has gradually improved.The main reason for the decrease in the comprehensive efficiency from 2007 to 2012 is the lower conversion efficiency in IIstage.(2)Spatial difference analysis shows that the areas with low the comprehensive efficiency were concentrated in Sunan,Minle,and Shandan Counties along the Qilian Mountains.The comprehensive efficiency was 0.406,0.489 and 0.482 respectively.The key to improving the comprehensive efficiency of Sunan County and Minle County is II-stage,while the focus of improving Shandan County is I-stage.(3)Redundancy analysis found that the main factor affecting the comprehensive efficiency of the Two Mountains conversion is insufficient output.In the future,we should focus on expanding effective pathways for the Two Mountains conversion and innovating institutional mechanisms for realizing ecological value. 展开更多
关键词 conversion efficiency Green and gold Accounting framework Enhancement strategies The Qilian mountain national park in China
在线阅读 下载PDF
Combing NIR-Ⅱmolecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6%photothermal conversion efficiency
2
作者 Xiao-Fang Lv Xiao-Yun Ran +7 位作者 Yu Zhao Rui-Rui Zhang Li-Na Zhang Jing Shi Ji-Xuan Xu Qing-Quan Kong Xiao-Qi Yu Kun Li 《Chinese Chemical Letters》 2025年第4期345-350,共6页
Photoheranostics have emerged as a promising tool for cancer theranostics owing to their real-time feedback on treatment and their precise diagnosis.Among them,how to improve the photothermal conversion efficiency(PCE... Photoheranostics have emerged as a promising tool for cancer theranostics owing to their real-time feedback on treatment and their precise diagnosis.Among them,how to improve the photothermal conversion efficiency(PCE)of phototheranostic agents(PTAs)is the key factor for phototheranostic systems.Herein,we provided an efficient method to improve PCE and constructed a biocompatible nano-material ICR-Qu@NH_(2)-Fe_(3)O_(4)@PEG(QNFP)by combing near-infrared second region(NIR-Ⅱ)molecular dye ICR-Qu and amino-modified magnetic nanoparticles and then encapsulated by DSPE-m PEG2000.QNFP exhibited excellent performance for photothermal therapy with a high PCE of 95.6%.Both in vitro and in vivo experiments indicated that QNFP could inhibit the growth of tumors under laser irradiation with low toxicity and realized real-time NIR-Ⅱfiuorescent imaging of tumors.In general,we realized a simple but efficient method to improve the PCE of NIR-Ⅱmolecular dye without reduce its quantum yield,which is an ideal choice for cancer diagnosis and treatment. 展开更多
关键词 Photothermal therapy Magnetic nanoparticles NIR-Ⅱfiuorescence imaging Photothermal conversion efficiency NH_(2)-F_e3O_(4)
原文传递
Enhancing I^(0)/I^(-)Conversion Efficiency by Starch Confinement in Zinc-lodine Battery 被引量:1
3
作者 Danyang Zhao Qiancheng Zhu +4 位作者 Qiancheng Zhou Wenming Zhang Ying Yu Shuo Chen Zhifeng Ren 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期114-120,共7页
The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle li... The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs. 展开更多
关键词 aqueous battery conversion efficiency iodine-zinc battery starch confinement
在线阅读 下载PDF
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
4
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 All-polymer solar cells Power conversion efficiency Structural order Charge generation
在线阅读 下载PDF
Improvement of the conversion efficiency of Mg_(3)Sb_(2)thermoelectric devices through optimizing the resistivity of the MgSbNi barrier layer
5
作者 Huimin Zhang Yachao Wang +3 位作者 Zuhair A.Munir Yongzhong Zhang Wenhao Fan Shaoping Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期208-214,共7页
Mg_(3)Sb_(2)-based thermoelectric materials have been the focus of widespread investigations as promising candidates for the harvesting of waste heat.Interface stability and service performance are key points for the ... Mg_(3)Sb_(2)-based thermoelectric materials have been the focus of widespread investigations as promising candidates for the harvesting of waste heat.Interface stability and service performance are key points for the commercial applications of these materials.We utilized Mg_(4.3)Sb_(3)Ni as a barrier layer to improve the thermal stability of Mg 3 Sb 2-based devices.However,its intrinsic high resistivity contributed nega-tively to the desired performance of the device.In this work,we investigated two other Mg-Sb-Ni ternary phases,MgSbNi and MgSbNi_(2),as new barrier layer materials to connect with Mg_(3.2)Sb_(2)Y_(0.05).The results show that the efficiency of the Mg_(1.2)SbNi/Mg_(3.2)Sb_(2)Y_(0.05)/Mg_(1.2)SbNi joint is increased by 33%relative to the higher Mg-content barriers due to lower resistivity.The system exhibited good interfacial compatibility and showed little change with aging at 673 K for 20 days. 展开更多
关键词 Mg_(3)Sb_(2) Mg_(1.2)SbNi Barrier layer conversion efficiency
原文传递
Sandwich-Structured Solar Cells with Accelerated Conversion Efficiency by Self-Cooling and Self-Cleaning Design
6
作者 Huide Fu Ben Wang +3 位作者 Rui He Yongpu Yang Hongyuan Li Zhiguang Guo 《Journal of Bionic Engineering》 CSCD 2024年第6期2955-2968,共14页
Photovoltaic(PV)power generation is highly regarded for its capability to transform solar energy into electrical power.However,in real-world applications,PV modules are prone to issues such as increased self-heating a... Photovoltaic(PV)power generation is highly regarded for its capability to transform solar energy into electrical power.However,in real-world applications,PV modules are prone to issues such as increased self-heating and surface dust accumulation,which contribute to a reduction in photoelectric conversion efficiency.Furthermore,elevated temperatures can adversely affect the components’operational longevity.To augment the efficiency and extend the lifespan of PV modules,it is crucial to implement cooling strategies and periodic surface dust removal.In this research,we introduce a composite PV module design that amalgamates a hygroscopic hydrogel with self-cleaning attributes.The design incorporates a superhydrophobic polydimethylsiloxane(PDMS)film as its exposed surface layer and employs a PAM-CaCl2-SiC hygroscopic hydrogel for rear cooling.This arrangement is intended to facilitate efficient surface self-cleaning and passive cooling of the composite PV module.Experimental studies were conducted to evaluate the performance of this innovative composite PV module design,and the results showed that the composite PV panel had an increase of about 1.39%in power generation compared to an ordinary PV panel in the spring of Shenzhen,China. 展开更多
关键词 SELF-CLEANING Solar cell SUPERHYDROPHOBIC Hygroscopic hydrogel conversion efficiency
在线阅读 下载PDF
Dual‑Donor‑Induced Crystallinity Modulation Enables 19.23% Efficiency Organic Solar Cells
7
作者 Anhai Liang Yuqing Sun +9 位作者 Sein Chung Jiyeong Shin Kangbo Sun Chaofeng Zhu Jingjing Zhao Zhenmin Zhao Yufei Zhong Guangye Zhang Kilwon Cho Zhipeng Kan 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期376-388,共13页
Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challengin... Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells. 展开更多
关键词 Trap-assisted charge recombination PHOTOLUMINESCENCE MISCIBILITY Current leakage Power conversion efficiency
在线阅读 下载PDF
Space solar cells with down-conversion quantum dots
8
作者 CHEN Zijian ZHONG Yanhua +3 位作者 SI Meng WANG Jiayi LI Heng LI Wenhua 《Optoelectronics Letters》 2025年第7期413-418,共6页
Quantum dots(QDs)can modulate the solar spectrum through the down-conversion mechanism to better match the spectral response of solar cells.Following previous work,this paper first tested the response of QD solar cell... Quantum dots(QDs)can modulate the solar spectrum through the down-conversion mechanism to better match the spectral response of solar cells.Following previous work,this paper first tested the response of QD solar cells to specific monochromatic light,and found that QDs can effectively improve the photoelectric conversion efficiency(PCE)in the ultraviolet(UV)band by comparison.Then the photoelectric properties of the QD solar cells are tested under the air-mass 1.5(AM1.5)and air-mass 0(AM0)spectra.The experimental results show that because the absorption band of QDs is in the UV region,the space solar cells in the AM0 spectrum can obtain better PCE after coating QDs.The research results show the technical route of space solar cells with down-conversion mechanism,and put forward an important direction for the application of space solar photovoltaic(PV)technology,and have a good application prospect. 展开更多
关键词 photoelectric conversion efficiency photoelectric properties qd solar cells solar cellsfollowing down conversion quantum dots photoelectric conversion efficiency pce modulate solar spectrum quantum dots qds can
原文传递
Advances in iron-based Fischer-Tropsch synthesis with high carbon efficiency
9
作者 Xueqing Zhang Wusha Jiye +2 位作者 Yuhua Zhang Jinlin Li Li Wang 《Chinese Journal of Catalysis》 2025年第7期4-21,共18页
Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal,natural gas,and biomass into clean fuels and high-value chemicals via syngas.Catalyst development is crucial for optimiz... Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal,natural gas,and biomass into clean fuels and high-value chemicals via syngas.Catalyst development is crucial for optimizing the process,with cobalt-and iron-based catalysts being widely used in industrial applications.Iron-based catalysts,in particular,are favored due to their low cost,broad temperature range,and high water-gas shift reaction activity,making them ideal for syngas derived from coal and biomass with a low H_(2)/CO ratio.However,despite their long history of industrial use,iron-based catalysts face two significant challenges.First,the presence of multiple iron phases-metallic iron,iron oxides,and iron carbides-complicates the understanding of the reaction mechanism due to dynamic phase transformations.Second,the high water-gas shift activity of these catalysts leads to increased CO_(2) selectivity,thereby reducing overall carbon efficiency.In Fischer-Tropsch synthesis,CO_(2) can arise as primary CO_(2) from CO disproportionation(the Boudouard reaction)and as secondary CO_(2) from the water-gas shift reaction.The accumulation of CO_(2) formation further compromises overall carbon efficiency,which is particularly undesirable given the current focus on minimizing carbon emissions and achieving carbon neutrality.This review focus on the ongoing advancements of iron-based catalysts for Fischer-Tropsch synthesis,with particular emphasis on overcoming these two critical challenges for iron-based catalysts:regulating the active phases and minimizing CO_(2) selectivity.Addressing these challenges is essential for enhancing the overall catalytic efficiency and selectivity of iron-based catalysts.In this review,recent efforts to suppress CO_(2) selectivity of iron-based catalysts,including catalyst hydrophobic modification and graphene confinement,are explored for their potential to stabilize active phases and prevent unwanted side reactions.This innovative approach offers new opportunities for developing catalysts with high activity,low CO_(2) selectivity,and enhanced stability,which are key factors for enhancing both the efficiency and sustainability for Fischer-Tropsch synthesis.Such advancements are crucial for advancing more efficient and sustainable Fischer-Tropsch synthesis technologies,supporting the global push for net-zero emissions goals,and contributing to carbon reduction efforts worldwide. 展开更多
关键词 Fischer-Tropsch synthesis Syngas conversion Carbon dioxide Carbon efficiency Iron carbide Graphene layer confinement
在线阅读 下载PDF
Surpassing Shockley-Queisser Efficiency Limit in Photovoltaic Cells
10
作者 Zhigang Li Bingqing Wei 《Nano-Micro Letters》 2025年第12期804-808,共5页
The Shockley-Queisser(S-Q)model sets a theoretical limit on the power conversion efficiency(PCE)of single-junction solar cells at around 33%.Recently,a PCE of 50%-60%was achieved for the first time in n-type singlejun... The Shockley-Queisser(S-Q)model sets a theoretical limit on the power conversion efficiency(PCE)of single-junction solar cells at around 33%.Recently,a PCE of 50%-60%was achieved for the first time in n-type singlejunction Si solar cells by inhibiting light conversion to heat at low temperatures.Understanding these new observations opens tremendous opportunities for designing solar cells with even higher PCE to provide efficient and powerful energy sources for cryogenic devices and outer and deep space explorations. 展开更多
关键词 Single-junction Si solar cells Power conversion efficiency Shockley-Queisser model Carrier freeze-out effect
在线阅读 下载PDF
Optimizing Hydropower Resources for Maximum Power Generation Efficiency in Environmentally Sustainable Electrical Energy Production
11
作者 Bevl Naidu Krishna Babu Sambaru +3 位作者 Guru Prasad Pasumarthi Romala Vijaya Srinivas K.Srinivasa Krishna V.Purna Kumari Pechetty 《Journal of Environmental & Earth Sciences》 2025年第6期381-394,共14页
Water power is one of the key renewable energy resources,whose efficiency is often hampered due to inefficient water flow management,turbine performance,and environmental variations.Most existing optimization techniqu... Water power is one of the key renewable energy resources,whose efficiency is often hampered due to inefficient water flow management,turbine performance,and environmental variations.Most existing optimization techniques lack the real-time adaptability to sufficiently allocate resources in terms of location and time.Hence,a novel Scalable Tas-manian Devil Optimization(STDO)algorithm is introduced to optimize hydropower generation for maximum power efficiency.Using the STDO to model important system characteristics including water flow,turbine changes,and energy conversion efficiency is part of the process.In the final analysis,optimizing these settings in would help reduce inefficiencies and maximize power generation output.Following that,simulations based on actual hydroelectric data are used to analyze the algorithm's effectiveness.The simulation results provide evidence that the STDO algorithm can enhance hydropower plant efficiency tremendously translating to considerable energy output augmentation compared to conven-tional optimization methods.STDO achieves the reliability(92.5),resiliency(74.3),and reduced vulnerability(9.3).To guarantee increased efficiency towards ecologically friendly power generation,the STDO algorithm may thus offer efficient resource optimization for hydropower.A clear route is made available for expanding the efficiency of current hydropower facilities while tackling the long-term objectives of reducing the environmental impact and increasing the energy output of energy produced from renewable sources. 展开更多
关键词 Hydropower Optimization Renewable Energy Energy conversion efficiency Turbine Performance Envi-ronmental Scalable Tasmanian Devil Optimization(STDO)
在线阅读 下载PDF
Dynamic Properties and Energy Conversion Efficiency of A Floating Multi-Body Wave Energy Converter 被引量:3
12
作者 YANG Shao-hui WANG Yong-qing +2 位作者 HE Hong-zhou ZHANG Jun CHEN Hu 《China Ocean Engineering》 SCIE EI CSCD 2018年第3期347-357,共11页
The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodi... The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter’s physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency. 展开更多
关键词 Wave energy converter multi-point absorption conversion efficiency vibration properties
在线阅读 下载PDF
Energy Conversion Efficiency of Rainbow Shape Piezoelectric Transducer 被引量:3
13
作者 LIU Xiangjian CHEN Renwen ZHU Liya 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第5期691-697,共7页
With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoe... With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory. It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and ma- terial properties from the analysis model. Simulation results show that there is an optimal length ratio to generate maximum en- ergy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate trans- ducer and steel substrate transducer are (0.65, 2.21%) and (0.65, 1.64%) respectively. The optimal thickness ratios and energy conversion efficieneies of beryllium bronze substrate transducer and steel substrate transducer are (1.16, 2.56%) and (1.49, 1.57%) respectively. With the increase of width ratio and initial curvature radius, both the energy conversion efficiencies de- crease. Moreover, beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer. 展开更多
关键词 energy conversion efficiency rainbow shape piezoelectric transducer theoretical analysis energy harvesting elec-tromechanical coupling coefficient
原文传递
0.35%THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate 被引量:5
14
作者 Zhiqiang Yu Nan Zhang +5 位作者 Jianxin Wang Zijie Dai Cheng Gong Lie Lin Lanjun Guo Weiwei Liu 《Opto-Electronic Advances》 SCIE EI CAS 2022年第9期26-33,共8页
In this study,an optical setup for generating terahertz(THz)pulses through a two-color femtosecond laser filament was carefully designed to achieve a precise overlap of two-color laser pulses in space and time.β-bari... In this study,an optical setup for generating terahertz(THz)pulses through a two-color femtosecond laser filament was carefully designed to achieve a precise overlap of two-color laser pulses in space and time.β-barium borate(BBO),α-BBO,and a dual-wavelength plate were used to compensate the phase delay of the two-color lasers.Tilting ofα-BBO could further realize the precise spatial overlap of the two beams by counteracting the walk-off effect.The maximum out-put THz pulse energy reached 21μJ in argon gas when using a commercial Ti:sapphire laser with a pulse energy of 6 mJ at a 1 kHz repetition rate.The corresponding conversion efficiency exceeded 0.35%. 展开更多
关键词 femtosecond laser filaments walk-off effect conversion efficiency
在线阅读 下载PDF
Measurement of conversion efficiency of soft X-ray from 0.35μm laser-irradiated aluminum planar targets 被引量:1
15
作者 任树喜 马洪良 +1 位作者 易荣清 刘慎业 《Journal of Shanghai University(English Edition)》 CAS 2006年第3期224-227,共4页
Conversion efficiency of soft X-ray from 0.35μm pulse laser-irradiated aluminium planar target at laser intensities 10^13- 10^15 W/cm^2 on the Xingguang-Ⅱ facility (laser energy 5 - 90 J, focal spot - Φ 200μm ful... Conversion efficiency of soft X-ray from 0.35μm pulse laser-irradiated aluminium planar target at laser intensities 10^13- 10^15 W/cm^2 on the Xingguang-Ⅱ facility (laser energy 5 - 90 J, focal spot - Φ 200μm full width of half maximun (FWHM) 400 - 800 ps) was measured. A simple model was given to explain soft X-ray conversion efficiency. In this model, because of the heat conduction from the laser-heated spot, the conversion was very small at lower irradiance limit, while at higher limit it was bounded by the energy lost in blow off plasma. Consequently, at the laser intensity around 2×10^14 W/cm^2 , the X-ray conversion efficiency reaches a maximum. 展开更多
关键词 soft X-ray conversion efficiency heat conduction.
在线阅读 下载PDF
An investigation of the L-shell x-ray conversion efficiency for laser-irradiated tin foils 被引量:1
16
作者 David BAILIE Cormac HYLAND +14 位作者 Raj L SINGH Steven WHITE Gianluca SARRI Francis P KEENAN David RILEY Steven J ROSE Edward G HILL Feilu WANG Dawei YUAN Gang ZHAO Huigang WEI Bo HAN Baoqiang ZHU Jianqiang ZHU Pengqian YANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第4期48-54,共7页
We have used the ShenguangⅡlaser in third harmonic(351 nm)to investigate the emission of L-shell radiation in the 3.3–4.4 ke V range generated using thin foils of Sn coated onto a parylene substrate with irradiation... We have used the ShenguangⅡlaser in third harmonic(351 nm)to investigate the emission of L-shell radiation in the 3.3–4.4 ke V range generated using thin foils of Sn coated onto a parylene substrate with irradiation of order 1015 W cm-2 and nanosecond pulse duration.In our experiment,we have concentrated on assessing the emission on the non-laser irradiated side as this allows an experimental geometry relevant to experiments on photo-ionised plasmas where a secondary target must be placed close to the source,to achieve x-ray fluxes appropriate to astrophysical objects.Overall L-shell conversion efficiencies are estimated to be of order 1%,with little dependence on Sn thickness between 400 and 800 nm. 展开更多
关键词 conversion efficiency laser plasma X-RAY SOURCES laboratory ASTROPHYSICS
在线阅读 下载PDF
Electroreduction of air‐level CO_(2) with high conversion efficiency 被引量:1
17
作者 Yangshen Chen Miao Kan +7 位作者 Shuai Yan Junbo Zhang Kunhao Liu Yaqin Yan Anxiang Guan Ximeng Lv Linping Qian Gengfeng Zheng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1703-1709,共7页
The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neu... The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neutrality,as well as economic and energy benefits.Nonetheless,the capture and concentrating of CO_(2) cost a substantial portion of energy,while almost all the reported researches showed CO_(2) electroreduction under high concentrations of(typically pure)CO_(2) reactants,and only very few recent studies have investigated the capability of applying low CO_(2) concentrations(such as~10%in flue gases).In this work,we first demonstrated the electroreduction of 0.03%CO_(2)(in helium)in a homemade gas‐phase electrochemical electrolyzer,using a low‐cost copper(Cu)or nanoscale copper(nano‐Cu)catalyst.Mixed with steam,the gas‐phase CO_(2) was directly delivered onto the gas‐solid interface with the Cu catalyst and reduced to CO,without the need/constraint of being adsorbed by aqueous solution or alkaline electrolytes.By tuning the catalyst and experi‐mental parameters,the conversion efficiency of CO_(2) reached as high as~95%.Furthermore,we demonstrated the direct electroreduction of 0.04%CO_(2) from real air sample with an optimized conversion efficiency of~79%,suggesting a promising perspective of the electroreduction ap‐proach toward direct CO_(2) conversion. 展开更多
关键词 CO_(2)conversion ELECTROCATALYSIS Low concentration CO_(2) Flow rate conversion efficiency
在线阅读 下载PDF
Temperature Effect on Light Concentration Silicon Solar Cell’s Operating Point and Conversion Efficiency 被引量:1
18
作者 Mahamadi Savadogo Boubacar Soro +4 位作者 Ramatou Konate Idrissa Sourabié Martial Zoungrana Issa Zerbo Dieudonné Joseph Bathiebo 《Smart Grid and Renewable Energy》 2020年第5期61-72,共12页
It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentra... It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (<i><span style="font-family:Verdana;">CPV</span></i><span style="font-family:Verdana;">). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. </span><span style="font-family:""><span style="font-family:Verdana;">This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (</span><i><span style="font-family:Verdana;">MPP</span></i><span style="font-family:Verdana;">) moves to the open circuit when the cell temperature increases.</span></span> 展开更多
关键词 TEMPERATURE Electric Power conversion efficiency Light Concentration Maximum Power Point Junction Dynamic Velocity
在线阅读 下载PDF
Meta-analysis of CO_(2) conversion,energy efficiency,and other performance data of plasma-catalysis reactors with the open access PIONEER database 被引量:1
19
作者 Antoine Salden Maik Budde +28 位作者 Carolina A.Garcia-Soto Omar Biondo Jairo Barauna Marzia Faedda Beatrice Musig ChloéFromentin Minh Nguyen-Quang Harry Philpott Golshid Hasrack Domenico Aceto Yuxiang Cai Federico Azzolina Jury Annemie Bogaerts Patrick Da Costa Richard Engeln María Elena Gálvez Timo Gans Tomas Garcia Vasco Guerra Carlos Henriques Monika Motak Maria Victoria Navarro Vasile I.Parvulescu Gerard Van Rooij Bogdan Samojeden Ana Sobota Paolo Tosi Xin Tu Olivier Guaitella 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期318-342,I0007,共26页
This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This t... This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool. 展开更多
关键词 Open-access database on plasma-catalysis experiment CO_(2) conversion PLASMA-CATALYSIS Carbon capture and utilisation(CCU) Energy efficiency Specific energy input Dielectric barrier discharge Packed bed reactor METHANATION Dry reforming of methane
在线阅读 下载PDF
In situ determination on food consumption and ecological conversion efficiency of a marine fish species, Hyporhamphus sajori
20
作者 Sun Yao(孙耀) +5 位作者 Yu Miao(于淼) Zhang Bo(张波) Tang Oisheng(唐启升) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2002年第3期407-414,共8页
The food consumption and ecological conversion efficiency of a species marine pelagic andsmall size fish, Hyporhamphus sajori, were determined by using in situ stomach content method presented by Eggers. The results s... The food consumption and ecological conversion efficiency of a species marine pelagic andsmall size fish, Hyporhamphus sajori, were determined by using in situ stomach content method presented by Eggers. The results showed that: (1) the fish was taken in food all day, so empty-stomach rate was very low, taking up about 4.5% of the total determined fish number. However, the fish still has significant daily feeding rhythm. A feeding peak was found 0:00 o'clock at night, but feeding level was always high in the daytime; (2) relationship between instantaneous food content in stomach and corresponding time could be described as S_t = a · e (-b·t). There was not significant difference of instantaneous gastric evacuation rate between two determinations, with average value being 0.13 × 10^(-2) g/ (g' h) (wet weight); (3) the daily food consumption tended to change in irregular waving form, with average value being (10.16Xl0^(-2)±1.19xl0(-2) g/ (g·d) (wet weight) or (55.56 × 10(-2) ±6.51 × 10^(-2) kJ/ (g·d). The wave distance is constant and about 14 d, but the wave height changed largely; (4) actual determining value of daily growth rate was 3.24 × 10^(-2)g/ (g·d) (wet weight) or 12.91 × 10^(-2)kJ/ (g·d), from which 31.89% (wet weight) or 23.24% kJ of ecological conversion efficiency could be obtained. 展开更多
关键词 Food consumption GROWTH ecological conversion efficiency Hyporhamphus sajori
在线阅读 下载PDF
上一页 1 2 171 下一页 到第
使用帮助 返回顶部