期刊文献+
共找到191,857篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient control and removal of laser‑generated aerosol particles by combining water spray with pre‑injection of electrical charged mist for nuclear reactor decommissioning
1
作者 Ruicong Xu Avadhesh Kumar Sharma +6 位作者 Zeeshan Ahmed Ravinder Kumar Laffolley Hugo Ryo Yokoyama Shuichiro Miwa Shunichi Suzuki Atsushi Kosuge 《Nuclear Science and Techniques》 2026年第1期244-262,共19页
Laser-induced aerosols,predominantly submicron in size,pose significant environmental and health risks during the decommissioning of nuclear reactors.This study experimentally investigated the removal of laser-generat... Laser-induced aerosols,predominantly submicron in size,pose significant environmental and health risks during the decommissioning of nuclear reactors.This study experimentally investigated the removal of laser-generated aerosol particles using a water spray system integrated with an innovative system for pre-injecting electrically charged mist in our facility.To simulate aerosol generation in reactor decommissioning,a high-power laser was used to irradiate various materials(including stainless steel,carbon steel,and concrete),generating aerosol particles that were agglomerated with injected water mist and subsequently scavenged by water spray.Experimental results demonstrate enhanced aerosol removal via aerosol-mist agglomeration,with charged mist significantly improving particle capture by increasing wettability and size.The average improvements for the stainless steel,carbon steel,and concrete were 40%,44%,and 21%,respectively.The results of experiments using charged mist with different polarities(both positive and negative)and different surface coatings reveal that the dominant polarity of aerosols varies with the irradiated materials,influenced by their crystal structure and electron emission properties.Notably,surface coatings such as ZrO_(2)and CeO_(2)were found to possibly alter aerosol charging characteristics,thereby affecting aerosol removal efficiency with charged mist configurations.The innovative aerosol-mist agglomeration approach shows promise in mitigating radiation exposure,ensuring environmental safety,and reducing contaminated water during reactor dismantling.This study contributes critical knowledge for the development of advanced aerosol management strategies for nuclear reactor decommissioning.The understanding obtained in this work is also expected to be useful for various environmental and chemical engineering applications such as gas decontamination,air purification,and pollution control. 展开更多
关键词 Laser-induced aerosol generation Aerosol removal electrically charging mist AGGLOMERATION Water spray scavenging Reactor decommissioning
在线阅读 下载PDF
Therapeutic effects of low-intensity transcranial focused ultrasound stimulation on ischemic stroke in rats:An in vivo evaluation using electrical impedance tomography
2
作者 Jiecheng Guo Sixuan He +4 位作者 Li Yan Lei Wang Xuetao Shi Huijing Hu Le Li 《Neural Regeneration Research》 2026年第3期1183-1190,共8页
Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance to... Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke. 展开更多
关键词 animal model brain stimulation electrical impedance tomography evaluation impedance noninvasive treatment real-time monitoring REHABILITATION STROKE transcranial focused ultrasound stimulation
暂未订购
Grafts of hydrogel-embedded electrically stimulated subventricular stem cells into the stroke cavity improves functional recovery of mice
3
作者 Andreea-Mihaela Cercel Ianis KS Boboc +5 位作者 Roxana Surugiu Thorsten R.Doeppner Dirk M.Hermann Bogdan Catalin Andrei Gresita Aurel Popa-Wagner 《Neural Regeneration Research》 2026年第2期695-703,共9页
The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly f... The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly formed neurons to the damaged area.However,only a small percentage of these neurons survive,and many do not reach the damaged area,possibly because the corpus callosum impedes the migration of subventricular zone-derived stem cells into the lesioned cortex.A second major obstacle to stem cell therapy is the strong inflammatory reaction induced by cerebral ischemia,whereby the associated phagocytic activity of brain macrophages removes both therapeutic cells and/or cell-based drug carriers.To address these issues,neurogenesis was electrically stimulated in the subventricular zone,followed by isolation of proliferating cells,including newly formed neurons,which were subsequently mixed with a nutritional hydrogel.This mixture was then transferred to the stroke cavity of day 14 post-stroke mice.We found that the performance of the treated animals improved in behavioral tests,including novel object,open field,hole board,grooming,and“time-to-feel”adhesive tape tests.Furthermore,immunostaining revealed that the stem cell marker nestin,the neuroepithelial marker Mash1,and the immature neuronal marker doublecortin-positive cells survived in the transplanted area for 2 weeks,possibly due to reduced phagocytic activity and supportive angiogenesis.These results clearly indicate that the transplantation of committed subventricular zone stem cells combined with a protective nutritional gel directly into the infarct cavity after the peak of stroke-induced neuroinflammation represents a feasible approach to improve neurorestoration after cerebral ischemia. 展开更多
关键词 ANXA3 behavioral recovery DOUBLECORTIN electrical stimulation Mash1 NESTIN STROKE subventricular neural stem cells supportive hydrogel vascular cell adhesion molecule 1
暂未订购
改进的ELECTRE动态模糊多属性决策方法
4
作者 张力娜 李镇吉 李小林 《内蒙古师范大学学报(自然科学版)》 2026年第1期69-77,共9页
提出一种改进的ELECTRE(elimination et choix traduisant la réalité)动态模糊多属性决策方法。首先,对动态决策矩阵运用熵权法获得客观的时间权重;其次,提出改进的ELECTRE方法,针对直觉模糊数不可直接比较的问题,根据隶属... 提出一种改进的ELECTRE(elimination et choix traduisant la réalité)动态模糊多属性决策方法。首先,对动态决策矩阵运用熵权法获得客观的时间权重;其次,提出改进的ELECTRE方法,针对直觉模糊数不可直接比较的问题,根据隶属度、非隶属度值不同的物理含义,分别构造其级别优先的一致性和矛盾性动态指标函数,再融合为各属性的一致性和矛盾性动态指标;随后,根据其相反的赋值意义,利用时间权重分别进行集成,获得综合各时间段的一致性和矛盾性指标并进行耦合,从而得到各方案的赋值级别优先关系,最终完成方案排序。实验数据验证了方法的有效性与可行性。 展开更多
关键词 动态多属性决策 直觉模糊集 electrE方法 熵权法
在线阅读 下载PDF
Transcutaneous electrical acupoint stimulation(TEAS):Applications and challenges 被引量:2
5
作者 Wen-lai ZHOU Jing LI +4 位作者 Xiao-ning SHEN Xia-tong HUA Jing XIE Yan-li ZHOU Lu ZHU 《World Journal of Acupuncture-Moxibustion》 2025年第1期10-16,共7页
Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,whic... Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,which is characterized by less adverse reaction and convenient operation.It has been widely used in the treatment of various diseases.This review introduces six major clinical applications of TEAS,named analgesia,regulation of gastrointestinal function,improvement of reproductive function,enhancement of cognitive function,promotion of limb function recovery and relief of fatigue.Besides,TEAS has been ap-plied to the treatment of other chronic diseases such as hypertension and diabetes,achieving satisfactory clinical effects.However,two crucial challenges are encountered in the development of TEAS.One is the lack of standardization in the selection of parameters such as waveform,frequency,intensity and stimula-tion duration.The other is the limitation on the flexibility in the acupoint selection.This review analyzes key issues that need to be addressed in the current clinical application of TEAS,such as the selection of parameters and acupoints,and this review provides a certain reference value for optimizing regimens of TEAS and promoting its development and application. 展开更多
关键词 Transcutaneous electrical acupoint stimulation(TEAS) Clinical application Influence factors Parameter selection
原文传递
Metal ion-crosslinked thermoconductive sugar-functionalized graphene fluoride-based cellulose papers with enhanced mechanical properties and electrical insulation 被引量:1
6
作者 Tae-Hyeong Jeong Pyeong-Jun Park +3 位作者 Sebastian Anand Dineshkumar Mani Jun-Beom Kim Sung-Ryong Kim 《Journal of Materials Science & Technology》 2025年第11期204-213,共10页
Thermally conductive papers with electrical insulation and mechanical robustness are essential for efficient thermal management in modern electronics.In this study,we introduced a metal ion-assisted interfacial crossl... Thermally conductive papers with electrical insulation and mechanical robustness are essential for efficient thermal management in modern electronics.In this study,we introduced a metal ion-assisted interfacial crosslinking strategy to strengthen sugarfunctionalized graphene fluoride(SGF)and cellulose nanofibers(CNF)by hydrogen bonding and metal ion crosslinking that leads to simultaneous enhancements in thermal conductivity and mechanical properties.The facile sugarassisted ball-milling exfoliation method was developed to achieve the exfoliation of graphite fluoride and hydroxyl group functionalization on the surface of graphene fluoride.Thanks to the good dispersibility of the SGF sheets in water,the flexible SGF/CNF composite papers with hydrogen bonding were prepared via vacuum-assisted filtration.We introduced hydrogen bonding and metal ion crosslinking into SGF/CNF papers to obtain densely packed composite papers.Ca^(2+)or Al^(3+)ion-crosslinked SGF/CNF papers exhibited superior thermal and mechanical properties owing to hydrogen bonding and metal ion crosslinking.SGF/CNF-Ca^(2+)and SGF/CNF-Al^(3+)papers at 50 wt%of SGF yield in-plane thermal conductivities of 72.93 and 75.02 W m^(-1) K^(-1),and tensile strengths of 121.5 and 135.7 MPa,respectively.A thermal percolation value was observed at 12.6 vol%of SGF filler content.In addition,the SGF/CNF papers exhibited electrical insulation properties.These remarkable characteristics of the metal ion-crosslinked SGF/CNF papers are attributed to the densely packed structures caused by the strong interfacial interactions from hydrogen bonding as well as metal ion-crosslinking that could promote phonon transport.High-performance metal ion-crosslinked SGF/CNF papers with these fascinating advantages offer great potential for the thermal management of flexible electronics. 展开更多
关键词 Thermal conductivity Mechanical robustness Metal ion-crosslinking Graphenefluoride electrical insulation
原文传递
Nacre-inspired composite papers with enhanced mechanical and electrical insulating properties:Assembly of aramid papers with aramid nanofibers and basalt nanosheets 被引量:1
7
作者 Dexian Ji Meiyun Zhang +6 位作者 Hao Sun Yuming Lyu Shelley Lymn Cormier Cong Ma Hui Zhang Yonghao Ni Shunxi Song 《Journal of Materials Science & Technology》 2025年第12期283-295,共13页
Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the ... Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the smooth surface and chemical inertness of aramid fibers. Herein, AP are modified via the nacre-mimetic structure composed of aramid nanofibers (ANF) and carbonylated basalt nanosheets (CBSNs). This is achieved by impregnating AP into an ANF-CBSNs (A-C) suspension containing a 3D ANF framework as the matrix and 2D CBSNs as fillers. The resultant biomimetic composite papers (AP/A-C composite papers) exhibit a layered “brick-and-mortar” structure, demonstrating superior mechanical and electrical insulating properties. Notably, the tensile strength and breakdown strength of AP/A-C5 composite papers reach 39.69 MPa and 22.04 kV mm^(−1), respectively, representing a 155 % and 85 % increase compared to those of the control AP. These impressive properties are accompanied with excellent volume resistivity, exceptional dielectric properties, impressive folding endurance, outstanding heat insulation, and remarkable flame retardance. The nacre-inspired strategy offers an effective approach for producing highly promising electrical insulating papers for advanced electrical equipment. 展开更多
关键词 Nacre-inspired structure Composite materials Aramid nanofibers Basalt nanosheets electrical insulation Mechanical strength
原文传递
EILnet: An intelligent model for the segmentation of multiple fracture types in karst carbonate reservoirs using electrical image logs 被引量:1
8
作者 Zhuolin Li Guoyin Zhang +4 位作者 Xiangbo Zhang Xin Zhang Yuchen Long Yanan Sun Chengyan Lin 《Natural Gas Industry B》 2025年第2期158-173,共16页
Karst fractures serve as crucial seepage channels and storage spaces for carbonate natural gas reservoirs,and electrical image logs are vital data for visualizing and characterizing such fractures.However,the conventi... Karst fractures serve as crucial seepage channels and storage spaces for carbonate natural gas reservoirs,and electrical image logs are vital data for visualizing and characterizing such fractures.However,the conventional approach of identifying fractures using electrical image logs predominantly relies on manual processes that are not only time-consuming but also highly subjective.In addition,the heterogeneity and strong dissolution tendency of karst carbonate reservoirs lead to complexity and variety in fracture geometry,which makes it difficult to accurately identify fractures.In this paper,the electrical image logs network(EILnet)da deep-learning-based intelligent semantic segmentation model with a selective attention mechanism and selective feature fusion moduledwas created to enable the intelligent identification and segmentation of different types of fractures through electrical logging images.Data from electrical image logs representing structural and induced fractures were first selected using the sliding window technique before image inpainting and data augmentation were implemented for these images to improve the generalizability of the model.Various image-processing tools,including the bilateral filter,Laplace operator,and Gaussian low-pass filter,were also applied to the electrical logging images to generate a multi-attribute dataset to help the model learn the semantic features of the fractures.The results demonstrated that the EILnet model outperforms mainstream deep-learning semantic segmentation models,such as Fully Convolutional Networks(FCN-8s),U-Net,and SegNet,for both the single-channel dataset and the multi-attribute dataset.The EILnet provided significant advantages for the single-channel dataset,and its mean intersection over union(MIoU)and pixel accuracy(PA)were 81.32%and 89.37%,respectively.In the case of the multi-attribute dataset,the identification capability of all models improved to varying degrees,with the EILnet achieving the highest MIoU and PA of 83.43%and 91.11%,respectively.Further,applying the EILnet model to various blind wells demonstrated its ability to provide reliable fracture identification,thereby indicating its promising potential applications. 展开更多
关键词 Karst fracture identification Deep learning Semantic segmentation electrical image logs Image processing
在线阅读 下载PDF
Highly electrically conductive MOF/conducting polymer nanocomposites toward tunable electromagnetic wave absorption 被引量:1
9
作者 Xin Wu Peiyuan Kang +5 位作者 Yinghan Zhang Haocheng Guo Shuoying Yang Qi Zheng Lianjun Wang Wan Jiang 《Journal of Materials Science & Technology》 2025年第2期258-269,共12页
Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of h... Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of high-temperature treatments has introduced uncertainties regarding the compositions and microstructures of resulting derivatives.Additionally,complete carbonization has led to diminished yields of the produced carbon composites,significantly limiting their practical applications.Consequently,the exploration of pristine MOF-based EMW absorbers presents an intriguing yet challenging endeavor,primarily due to inherently low electrical conductivity.In this study,we showcase the utilization of structurally robust Zr-MOFs as scaffolds to build highly conductive Zr-MOF/PPy composites via an inner-outer dual-modification approach,which involves the production of conducting polypyrrole(PPy)both within the confined nanoporous channels and the external surface of Zr-MOFs via post-synthetic modification.The interconnection of confined PPy and surface-lined PPy together leads to a consecutive and extensive conducting network to the maximum extent.This therefore entails outstanding conductivity up to~14.3 S cm^(-1) in Zr-MOF/PPy composites,which is approximately 1-2 orders of magnitude higher than that for conductive MOF nanocomposites constructed from either inner or outer modification.Benefiting from the strong and tunable conduction loss,as well as the induced dielectric polarization originated from the porous structures and MOF-polymer interfaces,Zr-MOF/PPy exhibits excellent microwave attenuation capabilities and a tunable absorption frequency range.Specifically,with only 15 wt.%loading,the minimum reflection loss(RLmin)can reach up to-67.4 dB,accompanied by an effective absorption bandwidth(EAB)extending to 6.74 GHz.Furthermore,the microwave absorption characteristics can be tailored from the C-band to the Ku-band by adjusting the loading of PPy.This work provides valuable insights into the fabrication of conductive MOF composites by presenting a straightforward pathway to enhance and reg-ulate electrical conduction in MOF-based nanocomposites,thus paving a way to facilely fabricate pristine MOF-based microwave absorbers. 展开更多
关键词 Conductive mof nanocomposites electromagnetic wave absorption MOF/conducting polymer electrical conductivity Zr-MOF/PPy
原文传递
Application of Meridian flow injection acupoint application combined with transcutaneous electrical acupoint stimulation in patients undergoing gastroenteroscopy 被引量:1
10
作者 Xian Hong Xiao-Yan Wu Qing-Li Xu 《World Journal of Gastroenterology》 2025年第36期113-121,共9页
BACKGROUND Although gastroscopy is a commonly used diagnostic and therapeutic technique,postoperative gastrointestinal dysfunction is prone to occur.Traditional Chinese medicine theory suggests that postoperative gast... BACKGROUND Although gastroscopy is a commonly used diagnostic and therapeutic technique,postoperative gastrointestinal dysfunction is prone to occur.Traditional Chinese medicine theory suggests that postoperative gastrointestinal disorders are related to spleen and stomach weakness.This study hypothesizes that the combination of acupoint application at the Ziwu Liuzhu acupoint and percutaneous acupoint electrical stimulation can promote postoperative gastrointestinal function recovery and alleviate stress reactions.AIM To investigate the effects of acupoint application of Ziwu Liuzhu combined with percutaneous acupoint electrical stimulation on postoperative gastrointestinal function recovery and stress response in patients undergoing gastrointestinal endoscopy surgery.METHODS A total of 120 patients who underwent gastroscopy surgery were selected and treated between October 2024 and January 2025.This study used a stratified block randomization method,and then allocated groups using computer-generated random number sequences(SAS 9.4 software).The groups were divided into two groups:A control group of 60 patients who received routine postoperative intervention measures,and an observation group of 60 patients who received acupuncture point application combined with transcutaneous acupoint electrical CONCLUSION The combination of percutaneous acupoint electrical stimulation in gastroscopy patients has been demonstrated to be both highly safe and effective.The benefits of this approach include the promotion of postoperative gastrointestinal function,the reduction of stress response,the attainment of optimal results,and the enhancement of patient satisfaction. 展开更多
关键词 Meridian flow injection acupoint application Acupoint application Transcutaneous electrical acupoint stimulation GASTROSCOPY Gastrointestinal function Stress response
暂未订购
Electrical impedance tomography: from technical innovations to bedside clinical solutions
11
作者 Nanxia Xuan Baoping Tian +3 位作者 Lan Ying Xiajing Cao Danqiong Wang Gensheng Zhang 《World Journal of Emergency Medicine》 2025年第5期497-502,共6页
Electrical impedance tomography(EIT)is a non-invasive imaging modality that generates real-time images by measuring tissue bioimpedance.It works by applying current and collecting voltage data to reconstruct images of... Electrical impedance tomography(EIT)is a non-invasive imaging modality that generates real-time images by measuring tissue bioimpedance.It works by applying current and collecting voltage data to reconstruct images of electrical conductivity,refl ecting tissue properties.[1]We aim to off er a comprehensive guide to the fundamental technology behind EIT and to explore its clinical applications across both pulmonary and extrapulmonary domains. 展开更多
关键词 tissue bioimpedance current application electrical conductivityrefl voltage data electrical impedance tomography electrical impedance tomography eit real time images non invasive imaging
暂未订购
Electrically Tunable Graphene Nanomechanical Resonators
12
作者 Yibo Wang Zhuozhi Zhang +4 位作者 Chenxu Wu Yushi Zhang Guosheng Lei Xiangxiang Song Guoping Guo 《Chinese Physics Letters》 2025年第7期467-488,共22页
The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface... The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface with various physical systems.Equipped with gate electrodes,it has been demonstrated that these exceptional device properties can be electrically manipulated,leading to a variety of nanomechanical/acoustic applications.Here,we review the recent progress of graphene nanomechanical resonators with a focus on their electrical tunability.First,we provide an overview of diferent graphene nanomechanical resonators,including their device structures,fabrication methods,and measurement setups.Then,the key mechanical properties of these devices,for example,resonant frequencies,nonlinearities,dissipations,and mode coupling mechanisms,are discussed,with their behaviors upon electrical gating being highlighted.After that,various potential classical/quantum applications based on these graphene nanomechanical resonators are reviewed.Finally,we briefy discuss challenges and opportunities in this feld to ofer future prospects for the ongoing studies on graphene nanomechanical resonators. 展开更多
关键词 gate electrodesit NONLINEARITIES resonant frequencies electrical gating quality factors mechanical properties nanomechanical resonators electrically tunable
原文传递
Effect of Modification and Aging Treatments on Microstructure,Mechanical Properties and Electrical Conductivity of Al8Si0.4Mg0.4Fe Alloy
13
作者 Xing Quanyi Zhou Ge +3 位作者 Zhang Haoyu Che Xin Wang Wenjingzi Chen Lijia 《稀有金属材料与工程》 北大核心 2025年第9期2247-2255,共9页
Self-designed Al8Si0.4Mg0.4Fe aluminium alloy was modified with Sr,followed by solid solution and aging treatments to regulate its microstructure and mechanical/electrical properties.The results show that after the mo... Self-designed Al8Si0.4Mg0.4Fe aluminium alloy was modified with Sr,followed by solid solution and aging treatments to regulate its microstructure and mechanical/electrical properties.The results show that after the modification treatment,the room-temperature tensile strength of the alloy remains nearly unchanged,the elongation at break slightly increases from 1.82%to 3.34%,and the electrical conductivity significantly increases from 40.1%international annealed copper standard(IACS)to 42.0%IACS.After the modification,the alloy was subjected to solid solution treatment at 515℃for 8 h,followed by aging treatment at 180,200,220 and 240℃for 6 h.With increasing aging temperature,the electrical conductivity increases monotonously from 41.4%IACS to 45.5%IACS,while the room-temperature tensile strength initially increases and then decreases.At 200℃,the alloy achieves an optimal balance between electrical conductivity and room-temperature tensile strength:the electrical conductivity is 42.5%IACS,and the room-temperature tensile strength is 282.9 MPa.When the aging temperature continues to rise,the alloy undergoes overaging.Although the conductivity continues to increase,the room-temperature tensile strength drops sharply,and it is only 177.1 MPa at 240℃. 展开更多
关键词 Al8Si0.4Mg0.4Fe alloy electrical conductivity aging treatment room-temperature mechanical properties microstructural evolution
原文传递
Strain-Induced Balancing of Strength and Electrical Conductivity in Cu-20 wt%Fe Alloy Wires:Effect of Drawing Strain
14
作者 Fei Yang Canhui Wu +3 位作者 Ruifeng Li Wenyi Huo Liming Dong Feng Fang 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1246-1260,共15页
The effects of drawing strain during intermediate annealing on the microstructure and properties of Cu-20 wt%Fe alloy wires while maintaining constant total deformation were investigated.Intermediate annealing effecti... The effects of drawing strain during intermediate annealing on the microstructure and properties of Cu-20 wt%Fe alloy wires while maintaining constant total deformation were investigated.Intermediate annealing effectively removes work hardening in both the Cu matrix and Fe fibers,restoring their plastic deformation capacity and preserving fiber continuity during subsequent redrawing.The process also refines the Fe phase,leading to a more uniform size distribution and straighter,better-aligned Cu/Fe phase interfaces,thereby enhancing the comprehensive properties of the alloy.The magnitude of drawing strain during intermediate annealing plays a critical role in balancing the mechanical strength and electrical conductivity of redrawn wires.A lower initial drawing strain requires greater redrawing strain,leading to excessive hardening of the Fe fibers,which negatively impacts the electrical conductivity and tensile plasticity.Conversely,a higher initial drawing strain can result in insufficient work hardening during the redrawing deformation process,yielding minimal strength improvements.Among the tested alloys,H/3.5 wires show a slight reduction in strength and hardness compared to W and H/4.5 wires but exhibit a significant increase in tensile elongation and electrical conductivity.The tensile strength was 755 MPa,and the electrical conductivity was 47%international-annealed copper standard(IACS).The optimal performance is attributed to the formation of a high-density,ultrafine Fe fiber structure-aligned parallel to the drawing direction,which is achieved through a suitable combination of the drawing process and intermediate annealing. 展开更多
关键词 Cu-Fe alloy Drawing deformation Intermediate annealing STRENGTH electrical conductivity
原文传递
Improvement of Surface Electrical Properties of Silicone Rubber Based on Fluorination
15
作者 Hanbo Zheng Yue Peng +1 位作者 Enpeng Qin Yi Li 《Journal of Polymer Materials》 2025年第2期549-568,共20页
Fluorination is a critical surface modification technique for enhancing the electrical performance of composite insulators.This study employs molecular simulations to examine the microstructure and space charge behavi... Fluorination is a critical surface modification technique for enhancing the electrical performance of composite insulators.This study employs molecular simulations to examine the microstructure and space charge behavior of fluorinated and non-fluorinated silicone rubber under an electric field,with experimental validation.The results show that fluorinated silicone rubber exhibits lower total energy,higher polarization,and stronger dipole moments compared to its non-fluorinated counterpart,shifting the material from an insulating to a conductive state.Under lower electric field strengths,the carbon-silicon bonds in fluorinated silicone rubber are longer,but it maintains geometric stability under higher fields.The energy gap changes across different fluorination modes and varies with electric field strength,indicating that fluorination affects conductivity differently at various field intensities.Both fluorination methods improve conductivity in the 0–3.8 V/nm range,with substitutional fluorination showing superior performance between 3.8 and 8.9 V/nm.Above 9.1 V/nm,fluorination maximizes conductivity.The fluorinated samples exhibit a greater redshift at higher electric fields,resulting in enhanced conductivity and improved surface charge distribution.These findings offer insights into the microscopic effects of fluorination on silicone rubber’s electrical properties,while experiments confirm that fluorination increases hydrophobicity and boosts DC flashover voltage,further enhancing the material’s performance. 展开更多
关键词 FLUORINATION composite insulators molecular simulation silicone rubber electrical properties
在线阅读 下载PDF
Integrated Innovative Applications of Artificial Intelligence and Electrical Automation Technology
16
作者 Liu Yang Mingxin Gao 《Journal of Electronic Research and Application》 2025年第3期247-253,共7页
The integrated innovation of artificial intelligence and electrical automation technology not only represents a further innovation of traditional models but also promotes the innovative development of both artificial ... The integrated innovation of artificial intelligence and electrical automation technology not only represents a further innovation of traditional models but also promotes the innovative development of both artificial intelligence and electrical automation technology.This paper delves into the significance of the integrated innovative applications of artificial intelligence and electrical automation technology,as well as the strategies for such applications,aiming to better achieve the intelligent development of electrical automation technology. 展开更多
关键词 Artificial intelligence electrical automation technology Integrated innovation
在线阅读 下载PDF
Review of electrical conductivity in magnesium alloys:Mechanisms,strategies and applications
17
作者 Qian Yuan Binbin Li +6 位作者 Jun Tan Xinjie Peng Hao Lv Guozhi Wu Puhua Yu Xianhua Chen Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第9期4064-4088,共25页
Magnesium(Mg)alloys offer significant potential for conductive applications,thanks to their distinctive attributes,including high specific strength,excellent electrical conductivity(EC),low density,electromagnetic int... Magnesium(Mg)alloys offer significant potential for conductive applications,thanks to their distinctive attributes,including high specific strength,excellent electrical conductivity(EC),low density,electromagnetic interference shielding effectiveness(EMI SE),and recyclability.However,a major challenge in Mg alloy research is balancing high strength with good EC,as strengthening these alloys often compromises their EC.This paper offers an in-depth analysis of the mechanisms,strategies,and applications aimed at improving the EC of Mg alloys.A bibliometric study is performed to uncover the main research trends and emerging hotspots within the field.The review then examines various strategies to improve EC focusing on factors such as solute elements,second phases,grain boundaries,textures,and vacancies.By carefully controlling alloy composition and optimizing heat treatment processes,significant advancements have been achieved by researchers in developing Mg alloys that possess both high strength and high EC,especially in Mg-Al,Mg-Zn,Mg-RE alloy systems and composites.Finally,the paper outlines future research directions,stressing the importance of further exploration into alloying element selection,heat treatment optimization,and other advanced strategies.These efforts are crucial for overcoming current challenges and expanding the application of Mg alloys in EC fields. 展开更多
关键词 Mg alloy electrical conductivity Mechanical properties Influencing factors MICROSTRUCTURE
在线阅读 下载PDF
Effects of noise on fluidized bed characteristics measurements by electrical capacitance tomography
18
作者 Kai Huang Chunlei Pei +4 位作者 Shuanghe Meng Wuqiang Yang Hua Li Mao Ye Jinlong Gong 《Chinese Journal of Chemical Engineering》 2025年第3期219-233,共15页
Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is... Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows. 展开更多
关键词 Noise electrical capacitance tomography Fluidized bed Signal-to-noise ratio MEASUREMENT
在线阅读 下载PDF
Effect of Si content on microstructure,mechanical,and thermal/electrical conductivities of Al-xSi-0.3Mn-0.3Mg-0.14Fe alloy prepared by super-slow-speed die-casting
19
作者 Lu Zhang Heng-cheng Liao Jiang Li 《China Foundry》 2025年第3期323-332,共10页
In this study,Al-xSi-0.3Mn-0.3Mg-0.14Fe alloys(x=6.5,7.5,8.5,wt.%)were prepared by super-slow-speed die-casting,and the effects of Si content on the microstructure,mechanical,and thermal/electrical conductivities in a... In this study,Al-xSi-0.3Mn-0.3Mg-0.14Fe alloys(x=6.5,7.5,8.5,wt.%)were prepared by super-slow-speed die-casting,and the effects of Si content on the microstructure,mechanical,and thermal/electrical conductivities in as-cast,T5,and T6 states(DIN EN 1706:2020)were investigated.It is found that the increase of Si content in the alloy enhances the formation of eutectic segregation band in the casting surface microstructure.Within the Si content range of 6.5%-8.5%,as a comprehensive evaluation criterion of mechanical properties,the quality index(QI)of 376.1 MPa can be obtained in the as-cast state of the alloy with about 7.5%Si content,373.4 MPa in T5 state of the alloy with 6.5%Si content,and 432.2 MPa in T6 state of the alloy containing 8.5%Si.The heat treatment state significantly affects the thermal conductivity and electrical conductivity of the alloys.The eutectic silicon in the alloy is segemented and further spheroidizaed during the solution process,and the solute atoms of Mg and Si are more adequately precipitated during the aging process.Both of these greatly reduce the probability of electron scattering.Thus,T6 treatment significantly improves the electrical and thermal conductivities.With the increase of Si content,both thermal conductivity and electrical conductivity decrease slightly,demonstrating a strong correlation with the Si content in the alloy. 展开更多
关键词 Al-Si alloy MICROSTRUCTURE mechanical property thermal conductivity electric conductivity
在线阅读 下载PDF
Effect of La content on microstructure,tensile properties,and electrical conductivity of cast Al-Mg-Si-xLa alloys
20
作者 Hong-yu Xu Hai-feng Jia +5 位作者 Ze-sheng Ji Ming-liang Li Han Yu Bo Jiang Ye Wang Mao-liang Hu 《China Foundry》 2025年第4期385-394,共10页
Lightweight aluminum alloy conductor materials(Al-Mg-Si alloys)require not only high electrical conductivity to reduce electrical loss,but also high strength to withstand extreme weather conditions.To improve electric... Lightweight aluminum alloy conductor materials(Al-Mg-Si alloys)require not only high electrical conductivity to reduce electrical loss,but also high strength to withstand extreme weather conditions.To improve electrical conductivity and mechanical properties of Al-Mg-Si alloy simultaneously,the rare earth La was introduced to modify the Al-Mg-Si alloy.The effect of La addition on the microstructure,tensile properties and electrical conductivity of cast Al-Mg-Si alloy was investigated systematically.Results indicate that the appropriate La content is helpful to improve the strength and electrical conductivity of Al-Mg-Si alloys.When the addition of La is 0.2wt.%,theα-Al grains are refined apparently,Mg and Si solute atoms in the Al matrix are reduced by the formation of Mg_(2)Si phase;the distribution of Al_(11)La_(3)phases is uniform,and the morphology of AlFeSi phase transforms from continuous state to discontinuous state.The Al-Mg-Si-0.2La alloy exhibits the optimal tensile properties and electrical conductivity,with an ultimate tensile strength of 170 MPa,a yield strength of 88 MPa,an elongation of 18.9%,and an electrical conductivity of 44.0%IACS.These values represent improvements of 9.0%,15.8%,70.3%,and 17.3%,respectively,compared to the Al-Mg-Si alloy without La addition.However,excessive La deteriorates the properties of Al-Mg-Si-xLa alloys. 展开更多
关键词 Al-Mg-Si alloy rare earth La MICROSTRUCTURE tensile properties electrical conductivity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部