期刊文献+
共找到8,632篇文章
< 1 2 250 >
每页显示 20 50 100
Electric Field-Controlled Interfacial Polarization Coupling in van der Waals Ferroelectric Heterojunctions
1
作者 Wei Li HengLiu Hualing Zeng 《Chinese Physics Letters》 2025年第5期188-205,共18页
Recent advances in van der Waals(vdW) ferroelectrics have sparked the development of related heterostructures with non-volatile and field-tunable functionalities. In vdW ferroelectric heterojunctions, the interfacial ... Recent advances in van der Waals(vdW) ferroelectrics have sparked the development of related heterostructures with non-volatile and field-tunable functionalities. In vdW ferroelectric heterojunctions, the interfacial electrical characteristics play a crucial role in determining their performance and functionality. In this study,we explore the interfacial polarization coupling in two-dimensional(2D) ferroelectric heterojunctions by fabricating a graphene/h-BN/CuInP_(2)S_(6)/α-In_(2)Se_(3)/Au ferroelectric field-effect transistor. By varying the gate electric field, the CuInP_(2)S_(6)/α-In_(2)Se_(3) heterojunction displays distinct interfacial polarization coupling states, resulting in significantly different electrical transport behaviors. Under strong gate electric fields, the migration of Cu ions further enhances the interfacial polarization effect, enabling continuous tuning of both the polarization state and carrier concentration in α-In_(2)Se_(3). Our findings offer valuable insights for the development of novel multifunctional devices based on 2D ferroelectric materials. 展开更多
关键词 GRAPHENE ferroelectric heterojunctions interfacial polarization coupling ferroelectric fiel electric field van der waals ferroelectric heterojunctions interfacial electrical characteristics vdw ferroelectric heterojunctions
原文传递
Electric-Field-Driven Generative Nanoimprinting for Tilted Metasurface Nanostructures
2
作者 Yu Fan Chunhui Wang +6 位作者 Hongmiao Tian Xiaoming Chen Ben QLi Zhaomin Wang Xiangming Li Xiaoliang Chen Jinyou Shao 《Nano-Micro Letters》 2026年第1期290-305,共16页
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p... Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality. 展开更多
关键词 Generative nanoimprinting electric field assistance Tilted metasurface structures Large-area fabrication
在线阅读 下载PDF
Day-Ahead Electricity Price Forecasting Using the XGBoost Algorithm: An Application to the Turkish Electricity Market
3
作者 Yagmur Yılan Ahad Beykent 《Computers, Materials & Continua》 2026年第1期1649-1664,共16页
Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies,hedge risk and plan generation schedules.By leveraging advanced data analytics and machine learning ... Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies,hedge risk and plan generation schedules.By leveraging advanced data analytics and machine learning methods,accurate and reliable price forecasts can be achieved.This study forecasts day-ahead prices in Türkiye’s electricity market using eXtreme Gradient Boosting(XGBoost).We benchmark XGBoost against four alternatives—Support Vector Machines(SVM),Long Short-Term Memory(LSTM),Random Forest(RF),and Gradient Boosting(GBM)—using 8760 hourly observations from 2023 provided by Energy Exchange Istanbul(EXIST).All models were trained on an identical chronological 80/20 train–test split,with hyperparameters tuned via 5-fold cross-validation on the training set.XGBoost achieved the best performance(Mean Absolute Error(MAE)=144.8 TRY/MWh,Root Mean Square Error(RMSE)=201.8 TRY/MWh,coefficient of determination(R^(2))=0.923)while training in 94 s.To enhance interpretability and identify key drivers,we employed Shapley Additive Explanations(SHAP),which highlighted a strong association between higher prices and increased natural-gas-based generation.The results provide a clear performance benchmark and practical guidance for selecting forecasting approaches in day-ahead electricity markets. 展开更多
关键词 Day-ahead electricity price forecasting machine learning XGBoost SHAP
在线阅读 下载PDF
Therapeutic effects of low-intensity transcranial focused ultrasound stimulation on ischemic stroke in rats:An in vivo evaluation using electrical impedance tomography
4
作者 Jiecheng Guo Sixuan He +4 位作者 Li Yan Lei Wang Xuetao Shi Huijing Hu Le Li 《Neural Regeneration Research》 2026年第3期1183-1190,共8页
Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance to... Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke. 展开更多
关键词 animal model brain stimulation electrical impedance tomography evaluation impedance noninvasive treatment real-time monitoring REHABILITATION STROKE transcranial focused ultrasound stimulation
暂未订购
Grafts of hydrogel-embedded electrically stimulated subventricular stem cells into the stroke cavity improves functional recovery of mice
5
作者 Andreea-Mihaela Cercel Ianis KS Boboc +5 位作者 Roxana Surugiu Thorsten R.Doeppner Dirk M.Hermann Bogdan Catalin Andrei Gresita Aurel Popa-Wagner 《Neural Regeneration Research》 2026年第2期695-703,共9页
The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly f... The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly formed neurons to the damaged area.However,only a small percentage of these neurons survive,and many do not reach the damaged area,possibly because the corpus callosum impedes the migration of subventricular zone-derived stem cells into the lesioned cortex.A second major obstacle to stem cell therapy is the strong inflammatory reaction induced by cerebral ischemia,whereby the associated phagocytic activity of brain macrophages removes both therapeutic cells and/or cell-based drug carriers.To address these issues,neurogenesis was electrically stimulated in the subventricular zone,followed by isolation of proliferating cells,including newly formed neurons,which were subsequently mixed with a nutritional hydrogel.This mixture was then transferred to the stroke cavity of day 14 post-stroke mice.We found that the performance of the treated animals improved in behavioral tests,including novel object,open field,hole board,grooming,and“time-to-feel”adhesive tape tests.Furthermore,immunostaining revealed that the stem cell marker nestin,the neuroepithelial marker Mash1,and the immature neuronal marker doublecortin-positive cells survived in the transplanted area for 2 weeks,possibly due to reduced phagocytic activity and supportive angiogenesis.These results clearly indicate that the transplantation of committed subventricular zone stem cells combined with a protective nutritional gel directly into the infarct cavity after the peak of stroke-induced neuroinflammation represents a feasible approach to improve neurorestoration after cerebral ischemia. 展开更多
关键词 ANXA3 behavioral recovery DOUBLECORTIN electrical stimulation Mash1 NESTIN STROKE subventricular neural stem cells supportive hydrogel vascular cell adhesion molecule 1
暂未订购
Narrow-band semiconductor as new piezoelectrics
6
作者 Yuan-Hua Lin 《Rare Metals》 2025年第9期6801-6803,共3页
Piezoelectric transduction technology enables the direct conversion between mechanical and electrical energy,finding extensive applications in sensing,acoustics,imaging,actuation,and energy harvesting[1].Previous stud... Piezoelectric transduction technology enables the direct conversion between mechanical and electrical energy,finding extensive applications in sensing,acoustics,imaging,actuation,and energy harvesting[1].Previous studies on piezoelectric materials have primarily focused on ceramics or single-crystal materials characterized by wide band gaps(E_(g)>2.0 e V[2])and low electrical conductivity.In contrast,narrow-bandgap(E_(g)<0.5 eV[3])semiconductor materials typically exhibit high electrical conductivity,which is unfavorable for the effective accumulation of charges required to establish a stable voltage response.Consequently,experimental investigations into the piezoelectric effect of narrow-bandgap semiconductors are scarce. 展开更多
关键词 energy harvesting previous narrow bandgap semiconductors energy harvesting sensing direct conversion mechanical electrical energyfinding piezoelectric materials high electrical conductivitywhich piezoelectric transduction technology
原文传递
Preface to the Special Issue:Thermoelectric Materials and Devices
7
作者 Gangjian Tan 《Acta Metallurgica Sinica(English Letters)》 2025年第5期705-706,共2页
We are delighted to introduce this Special Issue of Acta Metallurgica Sinica(English Letters)dedicated to"Thermoelectric Materials and Devices."Thermoelectric materials and devices have emerged as a promisin... We are delighted to introduce this Special Issue of Acta Metallurgica Sinica(English Letters)dedicated to"Thermoelectric Materials and Devices."Thermoelectric materials and devices have emerged as a promising technology for sustainable energy solutions,enabling efficient conversion between heat and electricity.This special collection highlights the latest advancements in the field,showcasing cutting-edge research and fostering interdisciplinary collaboration among researchers worldwide. 展开更多
关键词 thermoelectric materials sustainable energy sustainable energy solutionsenabling acta metallurgica sinica english heat electricity conversion interdisciplinary collaboration thermoelectric devices materials devicesthermoelectric materials devices
原文传递
Recent Development of Aircraft Electric Propulsion System:A Technical Review 被引量:1
8
作者 Wei Chen Yexin Yan +2 位作者 Yang Qi Ming Huang Weilin Li 《CES Transactions on Electrical Machines and Systems》 2025年第1期115-130,共16页
The technology of electric propulsion aircraft(EPA)represents an important direction and an advanced stage in the development of aviation electrification.It is a key pathway for green development in aviation industry ... The technology of electric propulsion aircraft(EPA)represents an important direction and an advanced stage in the development of aviation electrification.It is a key pathway for green development in aviation industry and can significantly enhance the energy efficiency of aircraft propulsion system.Electric motor is the most critical electromechanical energy conversion component in an aircraft electric propulsion system(EPS).High-performance electric motors,power electronic converters and EPS control form the foundation of the EPA.This paper provides an overview of the characteristics of electric motors for EPA,analyzes the inverter topologies of EPSs,and reviews ongoing EPA projects.The article highlights the latest advancements in three types of motors:superconducting motors(SCMs),permanent magnet synchronous motors(PMSMs),and induction motors(IMs).It summarizes the control system architectures of current EPA initiatives and,building on this foundation,proposes future research directions for EPSs.These include cutting-edge areas such as high-performance motors and advanced manufacturing technologies,Ga N-or Si C-based inverter integration and innovation,electric propulsion control systems,and optimization of wiring systems. 展开更多
关键词 electric propulsion aircraft Inverter topologies electric motor systems Superconducting motors Distributed electric propulsion
在线阅读 下载PDF
Electrical impedance tomography: from technical innovations to bedside clinical solutions
9
作者 Nanxia Xuan Baoping Tian +3 位作者 Lan Ying Xiajing Cao Danqiong Wang Gensheng Zhang 《World Journal of Emergency Medicine》 2025年第5期497-502,共6页
Electrical impedance tomography(EIT)is a non-invasive imaging modality that generates real-time images by measuring tissue bioimpedance.It works by applying current and collecting voltage data to reconstruct images of... Electrical impedance tomography(EIT)is a non-invasive imaging modality that generates real-time images by measuring tissue bioimpedance.It works by applying current and collecting voltage data to reconstruct images of electrical conductivity,refl ecting tissue properties.[1]We aim to off er a comprehensive guide to the fundamental technology behind EIT and to explore its clinical applications across both pulmonary and extrapulmonary domains. 展开更多
关键词 tissue bioimpedance current application electrical conductivityrefl voltage data electrical impedance tomography electrical impedance tomography eit real time images non invasive imaging
暂未订购
A novel balance method for determining the energy efficiency of electric traction networks
10
作者 Konstantin Suslov Andrey Kryukov +2 位作者 Aleksandr Cherepanov Andrey Batukhtin Yanhong Luo 《Global Energy Interconnection》 2025年第4期640-656,共17页
Modern electric traction networks(ETN)are equipped with automated systems for commercial accounting of power consumption(ASCAPC),which allows solving properly the problems of enhancing the energy efficiency of transpo... Modern electric traction networks(ETN)are equipped with automated systems for commercial accounting of power consumption(ASCAPC),which allows solving properly the problems of enhancing the energy efficiency of transportation processes.Energy efficiency of ETNs is defined as the amount of power losses in ETN components:overhead catenary systems and traction transformers.Due to the instability of traction loads and changes in their location in space,the electric traction network is different from the general network.It is necessary to develop an approach for loss analysis in traction networks and in transformers of traction substations.To solve this prob-lem,a balance-based technique for power loss calculation in traction networks based on ASCAPC data is proposed.First,the balance-based technique presented here breaks down the power consumption of the train by source.Then,calculates technical power losses in 25 and 225 kV traction networks as well as in traction transformers.Last,the technique is implemented in the form of an algorithm tested on real-life data and it is ready for practical use. 展开更多
关键词 electric traction networks Automated systems for commercial accounting of power consumption electricity losses Source breakdown of electricity consumption
在线阅读 下载PDF
Boosting thermoelectric performance of polycrystalline SnSe by controlled in-situ Ag_(2)Se precipitates in grain boundaries
11
作者 Xing Yang Chong-Yu Wang +4 位作者 Wang-Qi Bao Ze Li Zi-Yuan Wang Jing Feng Zhen-Hua Ge 《Journal of Materials Science & Technology》 2025年第14期18-28,共11页
Boundary engineering has proven effective in enhancing the thermoelectric performance of materials.SnSe,known for its low thermal conductivity,has garnered significant interest;however,its application is hindered by p... Boundary engineering has proven effective in enhancing the thermoelectric performance of materials.SnSe,known for its low thermal conductivity,has garnered significant interest;however,its application is hindered by poor electrical conductivity.Herein,the Ag_(8)GeSe_(6) is introduced into the p-type polycrystalline SnSe matrix to optimize the thermoelectric performance,and the in-situ Ag_(2)Se precipitates are formed in grain boundaries,which play dual roles,acting as an electron attraction center for improving hole concentration and a phonon scattering center for reducing lattice thermal conductivity.It effectively decouples the thermal and electrical transport properties to optimize the thermoelectric performance.Importantly,the amount of Ag_(2)Se can be controlled by adjusting the amount of Ag_(8)GeSe_(6) added to the SnSe matrix.The introduction of Ag_(8)GeSe_(6) enhances electrical conductivity due to the increased hole carrier caused by the introduced Ag+and the formed electron attraction center(in-situ Ag_(2)Se precipitates).Based on the DFT calculations,the band gap of the Ag_(8)GeSe_(6)-doped samples is considerably decreased,facilitating carrier transport.As a result,the electrical transport properties increase to 808μW m^(−1) K^(−2) at 823 K for SnSe+0.5 wt%Ag_(8)GeSe_(6).In addition,in-situ Ag_(2)Se precipitates in grain boundaries strongly enhance phonon scattering,causing a decrease in lattice thermal conductivity.Furthermore,the presence of defects contributes to a reduction in lattice thermal conductivity.Specifically,the thermal conductivity of SnSe+1.0 wt%Ag_(8)GeSe_(6) decreases to 0.29 W m^(−1) K^(−1) at 823 K.Consequently,SnSe+0.5 wt%Ag_(8)GeSe_(6) obtains a high ZT value of 1.7 at 823 K and maintains a high average ZT value of 0.57 over the temperature range of 323−773 K.Additionally,the mechanical properties of Ag_(8)GeSe_(6)-doped also show an improvement.These advancements can be applied to energy supply applications during deep space exploration. 展开更多
关键词 polycrystalline SnSe Ag Se precipitates low thermal conductivityhas thermoelectric performance electron attraction center boundary engineering optimize thermoelectric performanceand electrical conductivityhereinthe
原文传递
Progress in Flexoelectric Effect Research and Related Applications 被引量:1
12
作者 Pengwen Guo Mengmeng Jia +3 位作者 Di Guo Tianling Ren Zhong Lin Wang Junyi Zhai 《SmartSys》 2025年第1期39-46,共8页
The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals... The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals,dielectrics,biological materials,and semiconductors.Because of its unique size effect,nanoscale flexoelectricity has shown novel phenomena and promising applications in electronics,optronics,mechatronics,and photovoltaics.In this review,we provide a succinct report on the discovery and development of the flexoelectric effect,focusing on flexoelectric materials and related applications.Finally,we discuss recent flexoelectric research progress and still‐unsolved problems. 展开更多
关键词 electric polarization flexoelectric effect flexotronics size effect strain gradient
在线阅读 下载PDF
The bioelectrical properties of bone tissue 被引量:3
13
作者 Boon Chin Heng Yunyang Bai +4 位作者 Xiaochan Li Yanze Meng Yanhui Lu Xuehui Zhang Xuliang Deng 《Animal Models and Experimental Medicine》 CAS CSCD 2023年第2期120-130,共11页
Understanding the bioelectrical properties of bone tissue is key to developing new treatment strategies for bone diseases and injuries,as well as improving the design and fabrication of scaffold implants for bone tiss... Understanding the bioelectrical properties of bone tissue is key to developing new treatment strategies for bone diseases and injuries,as well as improving the design and fabrication of scaffold implants for bone tissue engineering.The bioelectrical properties of bone tissue can be attributed to the interaction of its various cell lineages(osteocyte,osteoblast and osteoclast)with the surrounding extracellular matrix,in the presence of various biomechanical stimuli arising from routine physical activities;and is best described as a combination and overlap of dielectric,piezoelectric,pyroelectric and ferroelectric properties,together with streaming potential and electro-osmosis.There is close interdependence and interaction of the various electroactive and electrosensitive components of bone tissue,including cell membrane potential,voltage-gated ion channels,intracellular signaling pathways,and cell surface receptors,together with various matrix components such as collagen,hydroxyapatite,proteoglycans and glycosaminoglycans.It is the remarkably complex web of interactive cross-talk between the organic and non-organic components of bone that define its electrophysiological properties,which in turn exerts a profound influence on its metabolism,homeostasis and regeneration in health and disease.This has spurred increasing interest in application of electroactive scaffolds in bone tissue engineering,to recapitulate the natural electrophysiological microenvironment of healthy bone tissue to facilitate bone defect repair. 展开更多
关键词 BONE dielectric electric FERROelectric HOMEOSTASIS METABOLISM piezoelectric PYROelectric REGENERATION
暂未订购
Electric Field Induced Superconductivity in Bilayer Octagraphene
14
作者 Yitong Yao Jun Li +2 位作者 Jiacheng Ye Fan Yang Dao-Xin Yao 《Chinese Physics Letters》 2025年第6期291-296,共6页
We investigate the energy bands,magnetism,and superconductivity of bilayer octagraphene with A-A stackingunder a perpendicular electric field.A tight-binding model is used to analyze the band structure of the system.T... We investigate the energy bands,magnetism,and superconductivity of bilayer octagraphene with A-A stackingunder a perpendicular electric field.A tight-binding model is used to analyze the band structure of the system.The doubling of the unit cell results in each band of the single layer splitting into two.We find that applyinga perpendicular electric field increases the band splitting.As the electric field strength increases,the nestingof the Fermi surface(FS)weakens,eventually disrupting the antiferromagnetic order,and bilayer octagrapheneexhibits superconductivity.Spin fluctuations can induce unconventional superconductivity with s±-wave pairing.Applying a perpendicular electric field to bilayer octagraphene parent weakens the nesting of the FS,ultimatelykilling the spin-density-wave(SDW)ordered state and transitioning it into the superconducting state,whichworks as a doping effect.We use the random-phase approximation approach to obtain the pairing eigenvaluesand pairing symmetries of the perpendicular electric field-tuned bilayer octagraphene in the weak coupling limit.By tuning the strength of the perpendicular electric field,the critical interaction strength for SDW order can bemodified,which in turn may promote the emergence of unconventional superconductivity. 展开更多
关键词 bilayer octagraphene perpendicular electric field single layer electric field energy bandsmagnetismand band splittingas doubling unit cell SUPERCONDUCTIVITY
原文传递
A Novel Integrated Energy Management Strategy of Energy Storage System for a Pure Electric-Driven Mining Hydraulic Excavator
15
作者 Tao Qin Yunhua Li +2 位作者 Long Quang Yu Yao Liman Yang 《Chinese Journal of Mechanical Engineering》 2025年第2期459-475,共17页
Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected ... Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected power outages in mines because of drastic changes in load power,leading to significant fluctuations in the power demand of the grid,which in turn affects production.To solve the above problem,a pure electric-driven mining hydraulic excavator based on electric-motor-driven swing platform and hydraulic pumps was used as the research object.Moreover,supercapacitors and DC/DC converter,as the energy storage system(ESS)adjust the output power of the grid and recover the braking kinetic energy of the swing platform.Subsequently,a novel integrated energy management strategy for a DC bus voltage predictive controller based on the power feedforward of fuzzy rules is proposed to run mining excavators efficiently and reliably.Specifically,the working modes of the ESS are determined by the DC bus voltage and state of charge(SOC)of the supercapacitor.Next,the output power of the supercapacitor and the DC bus voltage were controlled by adjusting the charging and discharging currents of the DC/DC converter using a predictive controller and fuzzy rules.In addition,a digital prototype of the excavator was verified using an original machine test.The performance of the different strategies and driven systems were analyzed using digital prototypes.The results showed that,compared with traditional excavators with diesel engines,the operational cost of the developed excavators was reduced by 54.02%.Compared to pure electric-driven excavators without an ESS,the peak power of the grid for the developed excavators was reduced by 10%.This study designed an integrated energy management strategy for a pure electric mining excavator that can regulate the power output of the grid and maintain the stability of the bus voltage and SOC of the ESS. 展开更多
关键词 Energy Management Strategy Pure electric Driven Mining Excavator Fuzzy Rules diesel engines mining excavators SUPERCAPACITORS electric motors Energy Storage System
在线阅读 下载PDF
Growth and Competitiveness of Chinese Electric Vehicle and Electric Vehicle Battery Companies: Observation and Analysis from an Ecosystem Perspective
16
作者 CHEN Jin 《International Relations and Diplomacy》 2025年第3期119-133,共15页
This study observes the process of strategy building and capability accumulation of companies in the currently booming Chinese electric vehicles(EV)1 market from the perspective of business ecosystems.While examining ... This study observes the process of strategy building and capability accumulation of companies in the currently booming Chinese electric vehicles(EV)1 market from the perspective of business ecosystems.While examining the internal and external factors of the formation about the Chinese EV industry business ecosystem,such as industrial structure transformation,technology transfer,government policies,and corporate competition,with the platform theory,I analyze the growth strategies and competitiveness of Chinese companies,particularly BYD Co.,Ltd.(BYD),which has risen to the top of the world in EV completed vehicles,and Contemporary Amperex Technology Co.,Ltd.(CATL),which has risen to the top of the world in electric vehicle batteries(EVB)2.BYD and CATL have gained competitive advantages by utilizing the distinctive management resources,which have accumulated over the years to build platforms for EVBs and EVs in response to changes in the external environment,and have actively developed their platform strategies. 展开更多
关键词 electric vehicle(EV) electric vehicle battery(EVB) BYD CATL competitive advantage platform strategy
在线阅读 下载PDF
State of Charge Prediction of Lithium-Ion Batteries for Electric Aircraft With Swin Transformer
17
作者 Wei Zhang Hongshen Hao Yewei Zhang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期645-647,共3页
Dear Editor,As an important energy storage device,lithium-ion battery plays a vital role in electric aircrafts,which are new and promising equipment of transportation in the future with low carbon emissions.Accurate p... Dear Editor,As an important energy storage device,lithium-ion battery plays a vital role in electric aircrafts,which are new and promising equipment of transportation in the future with low carbon emissions.Accurate prediction of the state of charge(SOC)of lithium-ion batteries is of great importance in reducing the probability of abnormal accidents and ensuring flight safety. 展开更多
关键词 electric aircraft prediction state charge soc flight safety energy storage swin transformer electric aircraftswhich lithium ion batteries reducing probability abnormal accidents
在线阅读 下载PDF
The voluntary national standard GB/T 29772-2024, General requirements of electric vehicle battery swap station, has taken effect since July 1, 2025.
18
《China Standardization》 2025年第5期1-1,共1页
The implementation of the standard is expected to help electric vehicle battery swap stations to adapt to diversified needs and vehicle models,promoting the industry’s orderly and healthy development.
关键词 healthy development electric vehicle battery swap stations diversified needs standard orderly development electric vehicle battery swap station vehicle models
原文传递
SP-RF-ARIMA:A sparse random forest and ARIMA hybrid model for electric load forecasting
19
作者 Kamran Hassanpouri Baesmat Farhad Shokoohi Zeinab Farrokhi 《Global Energy Interconnection》 2025年第3期486-496,共11页
Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environment... Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method. 展开更多
关键词 optimizing production capacityimproving operational efficiencyand sparse random forest hybrid model electric load forecasting accurate electric load forecasting elf renewable energy integration ARIMA feature selection
在线阅读 下载PDF
Smart standards for an all-electric and connected society
20
作者 Florian Spiteller 《China Standardization》 2025年第5期45-45,共1页
In IEC,we have the vision of an all-electric and connected society in which regenerative electrical energy is economically accessible for everybody as the primary form of energy,sustainably powering the growth of our ... In IEC,we have the vision of an all-electric and connected society in which regenerative electrical energy is economically accessible for everybody as the primary form of energy,sustainably powering the growth of our society.It is a vision that we can make it come true,but what do we need for it?The first step will be the coupling of different sectors.At the moment,these sectors are very independent from each other.So we need to generate energy for all of them simultaneously.What we will do in the future is that those sectors are coupled with a data link.When all those sectors can talk to each other,we will need less energy because we can better balance it. 展开更多
关键词 all electric society sector coupling regenerative electrical energy coupling different sectorsat regenerative energy energy accessibility data link generate energy
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部