The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a sw...The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a swirl generator, consisting of a rotary pipe and honeycomb assembly. The experiments were carried out in turbulent water flow condition at Reynolds number Re = 1 × 104 and inlet swirl intensity S = 1. Ultrasonic measurements were taken at four locations downstream of the third elbow. The two-dimensional velocity field of the flow field was measured using the phased array ultrasonic velocity profiler technique to evaluate the flow field with separation. Furthermore, a numerical simulation was performed and its results were compared with the experimental data. The numerical result was obtained by solving three-dimensional, Reynolds-averaged Navier-Stokes equations with the renormalization group k-ε turbulence model. The experimental results confirmed that the swirling flow condition modified the size of the separation region downstream of the third elbow. A qualitative comparison between the experimental and CFD simulation results of the averaged velocity field downstream of the third elbow showed similar tendency on reverse flow.展开更多
Elbow-inlet passage is widely used in large drainage pumping stations.Flow uniformity at the exit section directly determines its hydraulic performance.Flow uniformity must be optimized to improve the operational effi...Elbow-inlet passage is widely used in large drainage pumping stations.Flow uniformity at the exit section directly determines its hydraulic performance.Flow uniformity must be optimized to improve the operational efficiency of the large axial-flow pumping station.Modeling and numerical simulation methods were used to investigate the elbow-inlet passage,and the accuracy of the calculation results was verified.The key geometric parameters affecting the uniformity of the flow were optimized by the orthogonal experiment design.The optimal schemes were obtained and compared with the original scheme.The results show that flow uniformity V u after optimization is 95.41%,which is increased by 1.04%.The pumping station efficiency is increased by 1.89%,thereby confirming the applicability and accuracy of the proposed scheme,especially for the optimization of flow uniformity of the exit section of the elbow-inlet passage.展开更多
This study presents the numerical evaluation about the impact of flow disturbance near the intrados and extrados regions of the 90 degree bended elbow using CFX for several practical cases where the 90 degree bended u...This study presents the numerical evaluation about the impact of flow disturbance near the intrados and extrados regions of the 90 degree bended elbow using CFX for several practical cases where the 90 degree bended upward elbow is located in a proximity to the butterfly valve and the butterfly valve open angle is changed. For the change of a butterfly valve open angle from 60% to 100% and the increase of the distance between a valve and a 90 degree bended elbow, the effect of FAC (Flow-Accelerated Corrosion) in the 90 degree bended elbow may be neglected because the value and distribution of the velocity and shear stress is rapidly decreased comparing with the present status installed in an industry, and the data of 100% valve open (Case 3) and L/D ≈ 5 (Case 4) are very good agreement comparing with the reference data, L/D ≈ 8 (Case 2). The reasons are that flow already maintains a fully developed condition and a steady state in spite of less distance than the reference case, L/D = 8. Therefore, smooth flow fields have approached at a 90 degree bended elbow. Then, the effect of shear stress and vortex is hardly investigated around the intrados area of 90 degree bended elbow.展开更多
Computational fluid dynamics (CFD) analysis of single- phase and two-phase flow was performed in a 90 degree horizontal to vertical elbow with 12.7 mm inside diameter. Characteristic flow behavior was investigated at ...Computational fluid dynamics (CFD) analysis of single- phase and two-phase flow was performed in a 90 degree horizontal to vertical elbow with 12.7 mm inside diameter. Characteristic flow behavior was investigated at six different upstream and downstream locations of the elbow. To evaluate the effects of different phases, three different air veloci-ties and three different water velocities were used during this study. Commercial CFD code FLUENT was used to perform analysis of both single and multiphase flows. Pressure and velocity profiles at six locations showed an increase in pressure at the elbow geometry with decreasing pressure as fluid leaves from the elbow. Pressure drop behavior observed to be similar for single-phase and multiphase flows. Comparison of CFD results with available empirical models showed reasonably good agreement.展开更多
With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical pr...With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical problem; typically flowresistance occurs in the elbow. In the present study, according to the analysis of the surface morphology of fish scale, abiomimetic functional surface structure for the interior wall of elbow is designed. Based on the theory of liquid-solid two phaseflow, a CFD numerical simulation of ice-water mixture flowing through the elbow is carried out using finite element method.Conventional experiments of pressure drop and flow resistance for both bionic and common elbows are conducted to test theeffect of the bionic elbow on flow resistance reduction. It is found that with the increase in the ice mass fraction in the ice-watermixture, the effect of bionic elbow on resistance reduction becomes more obvious.展开更多
文摘The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a swirl generator, consisting of a rotary pipe and honeycomb assembly. The experiments were carried out in turbulent water flow condition at Reynolds number Re = 1 × 104 and inlet swirl intensity S = 1. Ultrasonic measurements were taken at four locations downstream of the third elbow. The two-dimensional velocity field of the flow field was measured using the phased array ultrasonic velocity profiler technique to evaluate the flow field with separation. Furthermore, a numerical simulation was performed and its results were compared with the experimental data. The numerical result was obtained by solving three-dimensional, Reynolds-averaged Navier-Stokes equations with the renormalization group k-ε turbulence model. The experimental results confirmed that the swirling flow condition modified the size of the separation region downstream of the third elbow. A qualitative comparison between the experimental and CFD simulation results of the averaged velocity field downstream of the third elbow showed similar tendency on reverse flow.
基金Natural Science Foundation of China(51806053)Anhui Provincial Key Research and Development Program(1804a09020012,1804a09020007)
文摘Elbow-inlet passage is widely used in large drainage pumping stations.Flow uniformity at the exit section directly determines its hydraulic performance.Flow uniformity must be optimized to improve the operational efficiency of the large axial-flow pumping station.Modeling and numerical simulation methods were used to investigate the elbow-inlet passage,and the accuracy of the calculation results was verified.The key geometric parameters affecting the uniformity of the flow were optimized by the orthogonal experiment design.The optimal schemes were obtained and compared with the original scheme.The results show that flow uniformity V u after optimization is 95.41%,which is increased by 1.04%.The pumping station efficiency is increased by 1.89%,thereby confirming the applicability and accuracy of the proposed scheme,especially for the optimization of flow uniformity of the exit section of the elbow-inlet passage.
文摘This study presents the numerical evaluation about the impact of flow disturbance near the intrados and extrados regions of the 90 degree bended elbow using CFX for several practical cases where the 90 degree bended upward elbow is located in a proximity to the butterfly valve and the butterfly valve open angle is changed. For the change of a butterfly valve open angle from 60% to 100% and the increase of the distance between a valve and a 90 degree bended elbow, the effect of FAC (Flow-Accelerated Corrosion) in the 90 degree bended elbow may be neglected because the value and distribution of the velocity and shear stress is rapidly decreased comparing with the present status installed in an industry, and the data of 100% valve open (Case 3) and L/D ≈ 5 (Case 4) are very good agreement comparing with the reference data, L/D ≈ 8 (Case 2). The reasons are that flow already maintains a fully developed condition and a steady state in spite of less distance than the reference case, L/D = 8. Therefore, smooth flow fields have approached at a 90 degree bended elbow. Then, the effect of shear stress and vortex is hardly investigated around the intrados area of 90 degree bended elbow.
文摘Computational fluid dynamics (CFD) analysis of single- phase and two-phase flow was performed in a 90 degree horizontal to vertical elbow with 12.7 mm inside diameter. Characteristic flow behavior was investigated at six different upstream and downstream locations of the elbow. To evaluate the effects of different phases, three different air veloci-ties and three different water velocities were used during this study. Commercial CFD code FLUENT was used to perform analysis of both single and multiphase flows. Pressure and velocity profiles at six locations showed an increase in pressure at the elbow geometry with decreasing pressure as fluid leaves from the elbow. Pressure drop behavior observed to be similar for single-phase and multiphase flows. Comparison of CFD results with available empirical models showed reasonably good agreement.
基金supported bv the National Natural Science Foundation of China(Grant No.50975164)the Science and Technology Planning Project of Shandong Proyince(Grant No.J09LD05)the Foundation of Key LaboratOry of Mine Hazard Prevention and Control (Grant No.MDPC0810)
文摘With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical problem; typically flowresistance occurs in the elbow. In the present study, according to the analysis of the surface morphology of fish scale, abiomimetic functional surface structure for the interior wall of elbow is designed. Based on the theory of liquid-solid two phaseflow, a CFD numerical simulation of ice-water mixture flowing through the elbow is carried out using finite element method.Conventional experiments of pressure drop and flow resistance for both bionic and common elbows are conducted to test theeffect of the bionic elbow on flow resistance reduction. It is found that with the increase in the ice mass fraction in the ice-watermixture, the effect of bionic elbow on resistance reduction becomes more obvious.