Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are ...Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.展开更多
The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on unders...The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on understanding the mechanical properties of reservoir rocks.Therefore,it is critical to obtain the reservoir mechanical parameters quickly,efficiently,and inexpensively.In this study,shale samples were collected from three basins in Southwest China,and the elastic modulus of shale in the indentation depth range of 0-5000 nm was obtained by nanoindentation experiments.Experimental results showed that different indentation depths had different physical characteristics.The shallower depths had the mechanical properties of single minerals,while the deeper depths had the mechanical properties of a multi-mineral composite.The difference between the two represented the cementation strength between the mineral particles.The error between the calculation results of the existing equivalent medium theoretical model and experimental data reached 324%.In this study,a weak cementation model was adopted,and three parameters obtained by nanoindentation experiments were considered:the soft component volume content,intergranular cementation strength,and mineral particle size.This solved the problem of assuming rather than calculating the values of some parameters in the existing model and realized the prediction of the macroscopic mechanical parameters of shale.The calculation error was reduced to less than 20%,and the test method and calculation model can be popularized and applied in engineering.展开更多
We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these material...We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward.展开更多
The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis ...The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).展开更多
Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modu...Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete.This study employs finite element simulations to investigate the elastic properties of rubberized mortar(RuM),considering the influence of inclusion stiffness and interfacial debonding.Different homogenization schemes,including Voigt,Reuss,and mean-field approaches,are implemented using DIGIMAT and ANSYS.Furthermore,the influence of the interfacial transition zone(ITZ)between mortar and rubber is analyzed by periodic homogenization.Subsequently,the influence of the ITZ is examined through a linear fracture analysis with the stress intensity factor as a key parameter,using the ANSYS SMART crack growth tool.Finally,a non-linear study in FEniCS is carried out to predict the strength of the composite material through a compression test.Comparisons with high density polyethylene(HDPE)and gravel inclusions show that increasing inclusion stiffness enhances compressive strength far more effectively than simply improving the mortar/rubber bond.Indeed,when the inclusions are much softer than the surrounding matrix,any benefit gained on the elastic modulus or strength from stronger interfacial adhesion becomes almost negligible.This study provide numerical evidence that tailoring the rubber’s intrinsic stiffness—not merely strengthening the rubber/mortar interface—is a decisive factor for improving the mechanical performance of RuM.展开更多
The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultras...The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep. the ultrasonic wave modulus of elasticity, Ems, the stress wave modulus of elasticity and El, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Er were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.展开更多
Uniaxial Compressive Strength (UCS) and modulus of elasticity (E) are the most important rock parameters required and determined for rock mechanical studies in most civil and mining projects. In this study, two mathem...Uniaxial Compressive Strength (UCS) and modulus of elasticity (E) are the most important rock parameters required and determined for rock mechanical studies in most civil and mining projects. In this study, two mathematical methods, regression analysis and Artificial Neural Networks (ANNs), were used to predict the uniaxial compressive strength and modulus of elasticity. The P-wave velocity, the point load index, the Schmidt hammer rebound number and porosity were used as inputs for both meth-ods. The regression equations show that the relationship between P-wave velocity, point load index, Schmidt hammer rebound number and the porosity input sets with uniaxial compressive strength and modulus of elasticity under conditions of linear rela-tions obtained coefficients of determination of (R2) of 0.64 and 0.56, respectively. ANNs were used to improve the regression re-sults. The generalized regression and feed forward neural networks with two outputs (UCS and E) improved the coefficients of determination to more acceptable levels of 0.86 and 0.92 for UCS and to 0.77 and 0.82 for E. The results show that the proposed ANN methods could be applied as a new acceptable method for the prediction of uniaxial compressive strength and modulus of elasticity of intact rocks.展开更多
The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elas- ticity effect is investigated by using a developed modified core-shell model. The effect of surface...The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elas- ticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 1 O0 nm. It is also found that the theoretical results calculated by a mod- ified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers.展开更多
The equations of generalized thermoelasticity with one relaxation time with variable modulus of elasticity and the thermal conductivity were used to solve a problem of an infinite material with a spherical cavity.The ...The equations of generalized thermoelasticity with one relaxation time with variable modulus of elasticity and the thermal conductivity were used to solve a problem of an infinite material with a spherical cavity.The inner surface of the cavity was taken to be traction free and acted upon by a thermal shock to the surface. Laplace transforms techniques were used to obtain the solution by a direct approach.The inverse Laplace transforms was obtained numerically.The temperature,displacement and stress distributions are represented graphically.展开更多
In this paper, a molecular dynamics simulations are provided for atomic structure of nanocrystals(1~3nm)by which t he lattice parameter of X_ray diffraction, cohesive energy and modulus of elas ticity were computed...In this paper, a molecular dynamics simulations are provided for atomic structure of nanocrystals(1~3nm)by which t he lattice parameter of X_ray diffraction, cohesive energy and modulus of elas ticity were computed. The results show that the structure of grain and grain bou ndaries in the same in both nanocrystal and coarse grain materials. The decrease of grain size and the increase volume fraction of grain boundaries lead to a se ries of different features, the modulus of elasticity of nanocrystalline materia ls have been found to be much reduced.展开更多
Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test re...Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value.展开更多
A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasib...A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value.展开更多
Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elssticity up to 111 GPa ...Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elssticity up to 111 GPa and compressive strength up to 360 MPa of mortar mixed silicon carbide was discussed and it was revealed that the contributions of the aggregate hardness and of the interfacial strength between the aggregate and the cement paste on the elasticity of mortar were imporant.展开更多
An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interf...An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interfacial transition zone(ITZ),and initial defects.With the three-dimensional(3D)finite element(FE)simulation,the highly heterogeneous composite elastic behavior of concrete was modeled,and the predicted results were compared with theoretical estimations for validation.Monte Carlo(MC)simulations were performed with the proposed mesostructure model to investigate the various factors of initial defects influencing the elastic modulus of concrete,such as the shape and concentration(pore volume fraction or crack density)of microspores and microcracks.It is found that the effective elastic modulus of concrete decreases with the increase of initial defects concentration,while the distribution and shape characteristics also exert certain influences due to the stress concentration caused by irregular inclusion shape.展开更多
Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability o...Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability of components.However,accurate characterization of the mechanical properties of thin films still faces challenges due to the complexity of film-substrate structure,and the characterization efficiency of traditional techniques is insufficient.In this paper,a high-throughput determination method of the elastic modulus of thin films is proposed based on the strain variance method,the feasibility of which is analyzed by the finite element method(FEM),and the specific tensile configuration with array-distributed thin films is designed and optimized.Based on the strain difference between the film-substrate region and the uncoated region,the elastic modulus of multiple films is obtained simultaneously,and the influences of film width,spacing,thickness,and distribution on the measurement of elastic modulus are elucidated.The results show that the change in film width has a more obvious effect on the elastic modulus determination than film spacing and thickness,i.e.,the larger the film width is,the closer the calculation results are to the theoretical value,and the change in calculation results tends to be stabilized when the film width increases to a certain length.Specifically,the simultaneous measurement of the elastic modulus of eight metal films on a polyimide(PI)substrate with a length of 110 mm and a width of 30 mm can be realized,and the testing throughput can be further increased with the extension of the substrate length.This study provides an efficient and low-cost method for measuring the elastic modulus of thin films,which is expected to accelerate the development of new thin film materials.展开更多
In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specim...In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,an...Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,and Hill models were used to determine the anisotropic elastic modulus of L1_(0)-FePt thin film with fiber texture.Then,the elastic strain energies of thin films under various stress conditions were calculated.Results reveal that the stress condition has a significant influence on the fiber texture evolution.When the L1_(0)-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation,the formation of{100}fiber texture is promoted.On the contrary,the ordering phase transformation under tensile in-plane strain promotes the{001}fiber texture formation.展开更多
Matter conductivities are crucial physical properties that directly determine the engineering application value of materials.In reality,the majority of materials are multiphase composites.However,there is currently a ...Matter conductivities are crucial physical properties that directly determine the engineering application value of materials.In reality,the majority of materials are multiphase composites.However,there is currently a lack of theoretical models to accurately predict the conductivities of composite materials.In this study,we develop a unified mixed conductivity(UMC)model,achieving unity in three aspects:(1)a unified description and prediction for different conductivities,including elastic modulus,thermal conductivity,electrical conductivity,magnetic permeability,liquid permeability coefficient,and gas diffusion coefficient;(2)a unified-form governing equation for mixed conductivities of various composite structures,conforming to the Riccati equation;(3)a unified-form composite structure,i.e.,a three-dimensional multiphase interpenetrating cuboid structure,encompassing over a dozen of typical composite structures as its specific cases.The UMC model is applicable for predicting the conductivity across six different types of physical fields and over a dozen different composite structures,providing a broad range of applications.Therefore,the current study deepens our understanding of the conduction phenomena and offers a powerful theoretical tool for predicting the conductivities of composite materials and optimizing their structures,which holds significant scientific and engineering implications.展开更多
In order to study the effects of the contents of used mortar recycled aggregate(OMRA)and brick recycled aggregate(BRA)on the deformation properties of recycled aggregate concrete(RAC),under uniaxial compression condit...In order to study the effects of the contents of used mortar recycled aggregate(OMRA)and brick recycled aggregate(BRA)on the deformation properties of recycled aggregate concrete(RAC),under uniaxial compression conditions,The RAC of OMRA(0%,5%,10%,and 15%)and BRA(0%,3%,6%,9%,12%,and 15%)were studied.The experimental results show that,under uniaxial compression,the interfacial relationships of RAC containing OMRA and BRA between different materials are more complex,and the failure mechanism is also more complex.The content of OMRA and BRA had significant influence on the deformation behavior of RAC.When the content of OMRA and BRA is high,it is difficult for existing formulas and models to accurately represent the actual value.In this study,the influence of OMRA and BRA content is taken into account,and the existing formulas for calculating concrete deformation are modified,so that these formulas can more accurately calculate the elastic modulus,peak strain and ultimate strain of recycled concrete.The stress-strain formula of Guo concrete fits the stress-strain curve of concrete very well.We modified the formula on the basis of Guo formula to make the formula more suitable for the stress-strain curve of recycled concrete containing old mortar and brick,and the theoretical model proposed has better fitting accuracy.The study provides a valuable reference for nonlinear analysis of recycled aggregate concrete structures under different proportions of OMRA and BRA.展开更多
基金support of this project through the Southwest Regional Partnership on Carbon Sequestration(Grant No.DE-FC26-05NT42591)Improving Production in the Emerging Paradox Oil Play(Grant No.DE-FE0031775).
文摘Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.
基金supported by the Key R&D Program Project of Xinjiang Province(2024B01013)the National Key Research and Development Program of China(2022YFE0129800).
文摘The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on understanding the mechanical properties of reservoir rocks.Therefore,it is critical to obtain the reservoir mechanical parameters quickly,efficiently,and inexpensively.In this study,shale samples were collected from three basins in Southwest China,and the elastic modulus of shale in the indentation depth range of 0-5000 nm was obtained by nanoindentation experiments.Experimental results showed that different indentation depths had different physical characteristics.The shallower depths had the mechanical properties of single minerals,while the deeper depths had the mechanical properties of a multi-mineral composite.The difference between the two represented the cementation strength between the mineral particles.The error between the calculation results of the existing equivalent medium theoretical model and experimental data reached 324%.In this study,a weak cementation model was adopted,and three parameters obtained by nanoindentation experiments were considered:the soft component volume content,intergranular cementation strength,and mineral particle size.This solved the problem of assuming rather than calculating the values of some parameters in the existing model and realized the prediction of the macroscopic mechanical parameters of shale.The calculation error was reduced to less than 20%,and the test method and calculation model can be popularized and applied in engineering.
基金Funded by Demonstration Platform for the Production and Application of Key Materials for High-grade CNC Machine Tools(No.2020-370104-34-03-043952)。
文摘We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward.
基金supported by the National Natural Science Foundation of China (Grant No.51705082)Fujian Provincial Minjiang Scholar Program (Grant No.0020-510759)+1 种基金Qishan Sholar program in Fuzhou University (Grant No.0020-650289)Fuzhou University Testing Fund of precious apparatus (Grant No.2023T018).
文摘The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).
基金financial support from the Chilean National Agency for Research and Development(ANID),National Doctorate No.21212028financial support from ANID,FONDECYT Regular Research Project No.1221793.
文摘Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete.This study employs finite element simulations to investigate the elastic properties of rubberized mortar(RuM),considering the influence of inclusion stiffness and interfacial debonding.Different homogenization schemes,including Voigt,Reuss,and mean-field approaches,are implemented using DIGIMAT and ANSYS.Furthermore,the influence of the interfacial transition zone(ITZ)between mortar and rubber is analyzed by periodic homogenization.Subsequently,the influence of the ITZ is examined through a linear fracture analysis with the stress intensity factor as a key parameter,using the ANSYS SMART crack growth tool.Finally,a non-linear study in FEniCS is carried out to predict the strength of the composite material through a compression test.Comparisons with high density polyethylene(HDPE)and gravel inclusions show that increasing inclusion stiffness enhances compressive strength far more effectively than simply improving the mortar/rubber bond.Indeed,when the inclusions are much softer than the surrounding matrix,any benefit gained on the elastic modulus or strength from stronger interfacial adhesion becomes almost negligible.This study provide numerical evidence that tailoring the rubber’s intrinsic stiffness—not merely strengthening the rubber/mortar interface—is a decisive factor for improving the mechanical performance of RuM.
基金This paper was supported by "Wood-inorganic Res-toration Material" in "Technique Introduction and Innovation of Bio-macromolecule New Material" of Introducing Overseas Advanced Forest Technology Innovation Program of China ("948" Innovation Pro-ject, Number: 2006-4-C03)
文摘The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep. the ultrasonic wave modulus of elasticity, Ems, the stress wave modulus of elasticity and El, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Er were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.
文摘Uniaxial Compressive Strength (UCS) and modulus of elasticity (E) are the most important rock parameters required and determined for rock mechanical studies in most civil and mining projects. In this study, two mathematical methods, regression analysis and Artificial Neural Networks (ANNs), were used to predict the uniaxial compressive strength and modulus of elasticity. The P-wave velocity, the point load index, the Schmidt hammer rebound number and porosity were used as inputs for both meth-ods. The regression equations show that the relationship between P-wave velocity, point load index, Schmidt hammer rebound number and the porosity input sets with uniaxial compressive strength and modulus of elasticity under conditions of linear rela-tions obtained coefficients of determination of (R2) of 0.64 and 0.56, respectively. ANNs were used to improve the regression re-sults. The generalized regression and feed forward neural networks with two outputs (UCS and E) improved the coefficients of determination to more acceptable levels of 0.86 and 0.92 for UCS and to 0.77 and 0.82 for E. The results show that the proposed ANN methods could be applied as a new acceptable method for the prediction of uniaxial compressive strength and modulus of elasticity of intact rocks.
基金Project supported by the National Natural Science Foundation of China (Grant No.11072104)the Scientific Research Program for Higher Schools of Inner Mongolia (Grant No.NJZY13013)
文摘The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elas- ticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 1 O0 nm. It is also found that the theoretical results calculated by a mod- ified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers.
文摘The equations of generalized thermoelasticity with one relaxation time with variable modulus of elasticity and the thermal conductivity were used to solve a problem of an infinite material with a spherical cavity.The inner surface of the cavity was taken to be traction free and acted upon by a thermal shock to the surface. Laplace transforms techniques were used to obtain the solution by a direct approach.The inverse Laplace transforms was obtained numerically.The temperature,displacement and stress distributions are represented graphically.
文摘In this paper, a molecular dynamics simulations are provided for atomic structure of nanocrystals(1~3nm)by which t he lattice parameter of X_ray diffraction, cohesive energy and modulus of elas ticity were computed. The results show that the structure of grain and grain bou ndaries in the same in both nanocrystal and coarse grain materials. The decrease of grain size and the increase volume fraction of grain boundaries lead to a se ries of different features, the modulus of elasticity of nanocrystalline materia ls have been found to be much reduced.
文摘Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value.
基金supported by the National Natural Science Foundation of China(Nos.51821001 and U2037601)Major Scientific and Technological Inno-vation Projects in Luoyang(No.2201029A)+1 种基金Foundation Strengthening Plan Technical Field Fund(No.2021-JJ-0112)Shanghai Jiao Tong University Student Innovation Prac-tice Program(No.IPP24076).
文摘A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value.
文摘Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elssticity up to 111 GPa and compressive strength up to 360 MPa of mortar mixed silicon carbide was discussed and it was revealed that the contributions of the aggregate hardness and of the interfacial strength between the aggregate and the cement paste on the elasticity of mortar were imporant.
基金Founded by the National Natural Science Foundation of China(No.42002287)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUG2106335)。
文摘An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interfacial transition zone(ITZ),and initial defects.With the three-dimensional(3D)finite element(FE)simulation,the highly heterogeneous composite elastic behavior of concrete was modeled,and the predicted results were compared with theoretical estimations for validation.Monte Carlo(MC)simulations were performed with the proposed mesostructure model to investigate the various factors of initial defects influencing the elastic modulus of concrete,such as the shape and concentration(pore volume fraction or crack density)of microspores and microcracks.It is found that the effective elastic modulus of concrete decreases with the increase of initial defects concentration,while the distribution and shape characteristics also exert certain influences due to the stress concentration caused by irregular inclusion shape.
文摘Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability of components.However,accurate characterization of the mechanical properties of thin films still faces challenges due to the complexity of film-substrate structure,and the characterization efficiency of traditional techniques is insufficient.In this paper,a high-throughput determination method of the elastic modulus of thin films is proposed based on the strain variance method,the feasibility of which is analyzed by the finite element method(FEM),and the specific tensile configuration with array-distributed thin films is designed and optimized.Based on the strain difference between the film-substrate region and the uncoated region,the elastic modulus of multiple films is obtained simultaneously,and the influences of film width,spacing,thickness,and distribution on the measurement of elastic modulus are elucidated.The results show that the change in film width has a more obvious effect on the elastic modulus determination than film spacing and thickness,i.e.,the larger the film width is,the closer the calculation results are to the theoretical value,and the change in calculation results tends to be stabilized when the film width increases to a certain length.Specifically,the simultaneous measurement of the elastic modulus of eight metal films on a polyimide(PI)substrate with a length of 110 mm and a width of 30 mm can be realized,and the testing throughput can be further increased with the extension of the substrate length.This study provides an efficient and low-cost method for measuring the elastic modulus of thin films,which is expected to accelerate the development of new thin film materials.
基金The National Natural Science Foundation of Chin(No.51305208)
文摘In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金Inner Mongolia Natural Science Foundation Project(2020LH05028)。
文摘Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,and Hill models were used to determine the anisotropic elastic modulus of L1_(0)-FePt thin film with fiber texture.Then,the elastic strain energies of thin films under various stress conditions were calculated.Results reveal that the stress condition has a significant influence on the fiber texture evolution.When the L1_(0)-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation,the formation of{100}fiber texture is promoted.On the contrary,the ordering phase transformation under tensile in-plane strain promotes the{001}fiber texture formation.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.52322105,52321001,52130002,U22A20114,and 52371084)the Youth Innovation Promotion Association CAS(No.2021192)+1 种基金the IMR Innovation Fund(No.2023-ZD01)the IMR Outstanding Scholar Position(No.E451A804).
文摘Matter conductivities are crucial physical properties that directly determine the engineering application value of materials.In reality,the majority of materials are multiphase composites.However,there is currently a lack of theoretical models to accurately predict the conductivities of composite materials.In this study,we develop a unified mixed conductivity(UMC)model,achieving unity in three aspects:(1)a unified description and prediction for different conductivities,including elastic modulus,thermal conductivity,electrical conductivity,magnetic permeability,liquid permeability coefficient,and gas diffusion coefficient;(2)a unified-form governing equation for mixed conductivities of various composite structures,conforming to the Riccati equation;(3)a unified-form composite structure,i.e.,a three-dimensional multiphase interpenetrating cuboid structure,encompassing over a dozen of typical composite structures as its specific cases.The UMC model is applicable for predicting the conductivity across six different types of physical fields and over a dozen different composite structures,providing a broad range of applications.Therefore,the current study deepens our understanding of the conduction phenomena and offers a powerful theoretical tool for predicting the conductivities of composite materials and optimizing their structures,which holds significant scientific and engineering implications.
基金Funded by the Project of National Key Research and Development Program of China(No.2019YFC1906202)。
文摘In order to study the effects of the contents of used mortar recycled aggregate(OMRA)and brick recycled aggregate(BRA)on the deformation properties of recycled aggregate concrete(RAC),under uniaxial compression conditions,The RAC of OMRA(0%,5%,10%,and 15%)and BRA(0%,3%,6%,9%,12%,and 15%)were studied.The experimental results show that,under uniaxial compression,the interfacial relationships of RAC containing OMRA and BRA between different materials are more complex,and the failure mechanism is also more complex.The content of OMRA and BRA had significant influence on the deformation behavior of RAC.When the content of OMRA and BRA is high,it is difficult for existing formulas and models to accurately represent the actual value.In this study,the influence of OMRA and BRA content is taken into account,and the existing formulas for calculating concrete deformation are modified,so that these formulas can more accurately calculate the elastic modulus,peak strain and ultimate strain of recycled concrete.The stress-strain formula of Guo concrete fits the stress-strain curve of concrete very well.We modified the formula on the basis of Guo formula to make the formula more suitable for the stress-strain curve of recycled concrete containing old mortar and brick,and the theoretical model proposed has better fitting accuracy.The study provides a valuable reference for nonlinear analysis of recycled aggregate concrete structures under different proportions of OMRA and BRA.