期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Symmetry of the Point Spectrum of Infinite Dimensional Hamiltonian Operators and Its Applications 被引量:1
1
作者 Hua WANG Alatancang Jun-jie HUANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第1期149-156,共8页
This paper studies the symmetry, with respect to the real axis, of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H. Note that the point spectrum of H can be described as σp(H)... This paper studies the symmetry, with respect to the real axis, of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H. Note that the point spectrum of H can be described as σp(H) = σp (A) U σp1 (-A*). Using the characteristic of the set σp1(-A*), we divide the point spectrum σp (d) of A into three disjoint parts. Then, a necessary and sufficient condition is obtained under which σp1(-A*) and one part of σp(A) are symmetric with respect to the real axis each other. Based on this result, the symmetry of σp(H) is completely given. Moreover, the above result is applied to thin plates on elastic foundation, plane elasticity problems and harmonic equations. 展开更多
关键词 infinite dimensional Hamiltonian operator point spectrum SYMMETRY thin plate on elasticfoundation plane elasticity problem harmonic equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部