This paper studies the symmetry, with respect to the real axis, of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H. Note that the point spectrum of H can be described as σp(H)...This paper studies the symmetry, with respect to the real axis, of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H. Note that the point spectrum of H can be described as σp(H) = σp (A) U σp1 (-A*). Using the characteristic of the set σp1(-A*), we divide the point spectrum σp (d) of A into three disjoint parts. Then, a necessary and sufficient condition is obtained under which σp1(-A*) and one part of σp(A) are symmetric with respect to the real axis each other. Based on this result, the symmetry of σp(H) is completely given. Moreover, the above result is applied to thin plates on elastic foundation, plane elasticity problems and harmonic equations.展开更多
基金Supported by the National Natural Science Foundation of China (No. 11061019, 10962004, 11101200)the Chunhui Program of Ministry of Education of China (No. Z2009-1-01010)+1 种基金the Natural Science Foundation of Inner Mongolia (No. 2010MS0110, 2009BS0101)the Cultivation of Innovative Talent of ‘211 Project’ of Inner Mongolia University
文摘This paper studies the symmetry, with respect to the real axis, of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H. Note that the point spectrum of H can be described as σp(H) = σp (A) U σp1 (-A*). Using the characteristic of the set σp1(-A*), we divide the point spectrum σp (d) of A into three disjoint parts. Then, a necessary and sufficient condition is obtained under which σp1(-A*) and one part of σp(A) are symmetric with respect to the real axis each other. Based on this result, the symmetry of σp(H) is completely given. Moreover, the above result is applied to thin plates on elastic foundation, plane elasticity problems and harmonic equations.