期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Laboratory insights into the effects of methane hydrate on the anisotropic joint elastic-electrical properties in fractured sandstones 被引量:1
1
作者 Sheng-Biao Liu Tong-Cheng Han Li-Yun Fu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期803-814,共12页
Fractured hydrate-bearing reservoirs show significantly anisotropic geophysical properties. The joint application of seismic and electromagnetic explorations is expected to accurately assess hydrate resources in the f... Fractured hydrate-bearing reservoirs show significantly anisotropic geophysical properties. The joint application of seismic and electromagnetic explorations is expected to accurately assess hydrate resources in the fractured reservoirs. However, the anisotropic joint elastic-electrical properties in such reservoirs that are the key to the successful application of the joint explorations, remain poorly understood. To obtain such knowledge, we designed and implemented dedicated laboratory experiments to study the anisotropic joint elastic-electrical properties in fractured artificial silica sandstones (with fracture density of about 6.2%, porosity of approximately 25.7%, and mean grainsize of 0.089 mm) with evolving methane hydrate. The experimental results showed that the anisotropic compressional wave velocities respectively increased and decreased with the forming and dissociating hydrate, and the variation in the increasing trend and the decreasing extent of the velocity perpendicular to the fractures were more significant than that parallel to the fractures, respectively. The experimental results also showed that the overall decreasing trend of the electrical conductivity parallel to the fractures was steeper than that perpendicular to the fractures during hydrate formation, and the general variations of the two conductivities with complex trend were similar during hydrate dissociation. The variations in the elastic and electrical anisotropic parameters with forming and dissociating hydrate were also found to be distinct. Interpretation of the experimental results suggested that the hydrate binding to the grains evolved to bridge the surfaces of fractures when saturation exceeded 10% during hydrate formation, and the bridging hydrate gradually evolved to floating in fractures during dissociation. The experimental results further showed that the anisotropic velocities and electrical conductivities were correlated with approximately consistent trends of different slopes during hydrate formation, and the joint elastic-electrical anisotropic parameters exhibited a sharp peak at the hydrate saturation of about 10%. The results suggested that the anisotropic joint properties can be employed not only to accurately estimate hydrate saturation but also possibly to identify hydrate distribution in the fractures. 展开更多
关键词 Fractured hydrate reservoirs Elastic anisotropy Electrical anisotropy Joint elastic-electrical properties Hydrate distribution
原文传递
Joint elastic-electrical properties of sediments in the Yellow Sea 被引量:3
2
作者 HAN TongCheng LIU BaoHua +2 位作者 KAN GuangMing MENG XiangMei DING ZhongJun 《Science China Earth Sciences》 SCIE EI CAS 2012年第1期143-148,共6页
We measured in the laboratory compressional wave velocity and electrical resistivity on 434 sediment samples collected from the Yellow Sea to study the joint elastic-electrical properties of marine sediments. Porosity... We measured in the laboratory compressional wave velocity and electrical resistivity on 434 sediment samples collected from the Yellow Sea to study the joint elastic-electrical properties of marine sediments. Porosity was found to reduce both elastic velocity and electrical resistivity of the marine sediments in a non-linear fashion; velocity showed an approximate linear increase with increasing logarithm of resistivity. Various effective medium models either implemented or developed were compared with the new dataset. The model results showed that the combined self-consistent approximation and differential effective medium model using critical porosity of 0.6 and 0.5 for velocity and resistivity respectively gave a reasonable description of the joint elastic-electrical behaviors of the marine sediments. The joint elastic-electrical properties of the marine sediments established would be used to estimate resistivity from measured velocity and vice versa, and could also be suitable for detection of gas hydrate or other suitable targets from joint seismic-resistivity surveys. 展开更多
关键词 joint elastic-electrical properties marine sediments Yellow Sea effective medium models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部