The application of a controllable neutron source for measuring formation porosity in the advancement of nuclear logging has garnered increased attention.The existing porosity algorithm,which is based on the thermal ne...The application of a controllable neutron source for measuring formation porosity in the advancement of nuclear logging has garnered increased attention.The existing porosity algorithm,which is based on the thermal neutron counting ratio,exhibits lower sensitivity in high-porosity regions.To enhance the sensitivity,the effects of elastic and inelastic scattering,which influence the slowing-down of fast neutrons,were theoretically analyzed,and a slowing-down model of fast neutrons was created.Based on this model,a density correction porosity algorithm was proposed based on the relationship between density,thermal neutron counting ratio,and porosity.Finally,the super multifunctional calculation program for nuclear design and safety evaluation(TopMC/SuperMC)was used to create a simulation model for porosity logging,and its applicability was examined.The results demonstrated that the relative error between the calculated and actual porosities was less than 1%,and the influence of deviation in the density measurement was less than 2%.Therefore,the proposed density correction algorithm based on the slowing-down model of fast neutrons can effectively improve the sensitivity in the high-porosity region.This study is expected to serve as a reference for the application of neutron porosity measurements with D–T neutron sources.展开更多
The study of collision between metastable positronium(Ps)and antihydrogen(H)is crucial for precision experiments involving H.In this paper,we investigate the elastic scattering between H and Ps(2s)by combining the con...The study of collision between metastable positronium(Ps)and antihydrogen(H)is crucial for precision experiments involving H.In this paper,we investigate the elastic scattering between H and Ps(2s)by combining the confined variational method with the projection method,for scattering energies from 0.0245 eV to 0.068 eV.Our calculations provide accurate phase shifts and cross sections for the 1,3S and 1,3P symmetries.Near the binding threshold,the rapid increase in the total cross section may be attributed to the P-wave resonance effect.Additionally,we determined the S-wave scattering lengths to be 9.34 a_(0)and 5.81 a_(0)for singlet and triplet elastic scattering,respectively.展开更多
The reaction dynamics of exotic nuclei near the drip line is one of the main research topics of current interest.Elastic scattering is a useful probe for investigating the size and surface diffuseness of exotic nuclei...The reaction dynamics of exotic nuclei near the drip line is one of the main research topics of current interest.Elastic scattering is a useful probe for investigating the size and surface diffuseness of exotic nuclei.The development of rare isotope accelerators offers opportunities for such studies.To date,many relevant measurements have been performed at accelerators using the projectile fragmentation technique,while the measurements at accelerators using isotope separator on-line(ISOL)systems are still quite scarce.In this work,we present the first proof-of-principle experiment with a post-accelerated ISOL beam at the Beijing Radioactive Ion Beam Facility(BRIF)by measuring the angular distribution of elastic scattering for the stable nucleus^(23)Na from the doubly magic nucleus^(40)Ca at energies above the Coulomb barrier.The angular distribution measured by a silicon strip detector array in a scattering chamber using the ISOL beam at BRIF is in good agreement with that measured by the high-precision Q3 D magnetic spectrograph using the nonISOL beam at nearly the same energy.This work provides useful background for making BRIF a powerful tool for the investigation of the reaction dynamics of exotic nuclei.展开更多
A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was perfo...A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was performed to explore the effects of beam drifts in different directions and distances on the angular distribution of the Rutherford scattering,as measured by the detector array.The results indicate that when the beam drift distance is less than 2.0 mm,the symmetry of the detector array can maintain a count error of less than 5%.This confirms the property of the detector array for RIB experiments.Furthermore,the simulation was validated through the elastic scattering angular distributions of 6;7 Li measured by the detector array in 6;7Li t209 Bi experiments at different energies.展开更多
We propose QCD inspired model to calculate ^-pp and pp elastic scatterings at high energies in this paper. A calculation for total cross section of ^-pp and pp is performed in which the contributions from gluon-gluon,...We propose QCD inspired model to calculate ^-pp and pp elastic scatterings at high energies in this paper. A calculation for total cross section of ^-pp and pp is performed in which the contributions from gluon-gluon, quark-quark, and gluon-quark interactions are included. Our results show that the QCD inspired model gives a perfect fit to experimental data of total cross section both for ^-pp and pp elastic scatterings at the whole energy region where experimental data existed at FNAL and CERN.展开更多
In this paper,a new M3Y-type effective nucleon–nucleon interaction,derived based on the lowest order constrained variational approach(LOCV)and termed B3Y-Fetal,has been used in DDM3Y1,BDM3Y1,BDM3Y2,and BDM3Y3 density...In this paper,a new M3Y-type effective nucleon–nucleon interaction,derived based on the lowest order constrained variational approach(LOCV)and termed B3Y-Fetal,has been used in DDM3Y1,BDM3Y1,BDM3Y2,and BDM3Y3 density-dependent versions in a heavy ion(HI)optical potential based on four types of a real folded potential and a phenomenological Woods–Saxon imaginary potential to study the elastic scattering of the^(16)O+^(16)O nuclear system within the framework of the optical model(OM)by computing the associated differential cross sections at various incident energies.The results of the folding analyses have shown the DDB3Y1-Fetal and BDB3Y1-Fetal,out of the four folded potentials,give a reasonably better description of the elastic data of the nuclear system.These best-fit folded potentials are followed,in performance,by the BDB3Y2-Fetal,with the BDB3Y3-Fetal potential coming last.This performance trend was also demonstrated by the optical potentials based on the M3Y-Reid interaction.Furthermore,the best-fit folded potentials,renormalized by a factor NRof approximately 0.9,have been shown to reproduce the energy dependence of the real optical potential for^(16)O scattering found in previous optical model analyses creditably well.In excellent agreement with previous works,they have also been identified in this work to belong to the family of deep refractive potentials because they have been able to reproduce and consistently describe the evolution of Airylike structures,at large scattering angles,observed in the^(16)O scattering data at different energies.Finally,a comparison of the performances of B3Y-Fetal and M3Y-Reid effective interactions undertaken in this work has shown impressive agreement between them.展开更多
A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid w...A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.展开更多
We initially propose a Reggeon-Pomeron exchange model to describe proton-proton elastic scattering at high energies in this short paper. A calculation for total cross section of proton-proton elastic scattering at hig...We initially propose a Reggeon-Pomeron exchange model to describe proton-proton elastic scattering at high energies in this short paper. A calculation for total cross section of proton-proton elastic scattering at high energies is performed without any free parameters. Our new finding from this work is that the Reggeon-Pomeron model gives a perfect fit to experimental data of the total cross section at the whole energy region where experimental data exist.展开更多
The elastic scattering of p-^14Be system at Elab = 200 MeV is evaluated within the relativistic impulse approximation. We discuss the effects of the halo neutrons on the three observables of the elastic scattering sys...The elastic scattering of p-^14Be system at Elab = 200 MeV is evaluated within the relativistic impulse approximation. We discuss the effects of the halo neutrons on the three observables of the elastic scattering system, such as differential cross section dσ/ dΩ, analyzing power Ay and spin rotation Q. The results of the three observables of the elastic scattering of p-^14Be system are compared with those of p-^12C and p-^16O systems at the same energy as E1ab = 200 MeV. We have found that in the small angular region the Ay and Q, as well as dσ/dΩ, are quite sensitive to the nucleon density distributions on the surface of the target nucleus and offer some unique behaviors of halo nuclei.展开更多
Based on the quark-gluon structure of nucleon and the existence of Odderon in nucleon via gluon selfinteraction, the elastic scattering of pp at high energies is studied. Our theoretical predictions reproduce experime...Based on the quark-gluon structure of nucleon and the existence of Odderon in nucleon via gluon selfinteraction, the elastic scattering of pp at high energies is studied. Our theoretical predictions reproduce experimental data perfectly. The contributions from individual terms of quark-quark, gluon-gluon interactions, quark-gluon interference and the Odderon terms to total cross section are analyzed. In addition to the leading quark-quark contribution, the Odderon contribution is quite important. In particular, the Odderon plays an essential role in fitting to data. Therefore, We may claim that the high energy pp and pp elastic scattering may be good processes to search for the Odderon, the three Reggeized gluon bound states.展开更多
In the present paper, the elastic scattering of6 Li + 209 Bi system is reanalyzed by using the double folding model (DFM) at energies near the Coulomb barrier (ELab=29.9 and 32.8 MeV). With this goal, a new density di...In the present paper, the elastic scattering of6 Li + 209 Bi system is reanalyzed by using the double folding model (DFM) at energies near the Coulomb barrier (ELab=29.9 and 32.8 MeV). With this goal, a new density distribution of6 Li nucleus, the no-core full configuration (NCFC) density distribution (DD), is used to obtain the real potentials in DFM calculations. The NCFC DD results are compared with the results of both gaussian shape (GS) DD and an earlier study as well as the experimental data. This comparison provides information about the similarities and differences of the models used in calculations.展开更多
An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z...An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z, in the valence range. The potential is used to investigate the elastic scattering of two N atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and the shape of total elastic cross section curve is mainly dominated by the s-partial wave at very low collision energies. Three shape resonances are found in the total elastic cross sections. Concretely, the first one is very sharp and strong. It results from the g-partial-wave contribution and the resonant energy is 3.645 × 10^-6 a.u. The second one is contributed by the h-partial wave and the resonant energy is 1.752 × 10^-5 a.u. This resonance is broadened by those from the d- and f-partial waves. The third one comes from the l = 6 partial wave contribution and the resonant energy is 3.522 × 10^-5 a.u. This resonance is broadened by those from the g- and h-partial waves. The N2(X1∑g+) molecular parameters, which are determined at the current theoretical level, achieve very high accuracy due to the employment of the largest correlation-consistent basis set in the valence range.展开更多
We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in...We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section(DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra.展开更多
Laser-induced electron diffraction(LIED), in which elastic scattering of the returning electron with the parent ion takes place, has been used to extract atomic potential and image molecular structures with sub-?A ...Laser-induced electron diffraction(LIED), in which elastic scattering of the returning electron with the parent ion takes place, has been used to extract atomic potential and image molecular structures with sub-?A precision and exposure time of a few femtoseconds. So far, the polarization and exchange effects have not been taken into account in the theoretical calculation of differential cross section(DCS) for the laser-induced rescattering processes. However, the validity of this theoretical treatment has never been verified. In this work, we investigate the polarization and exchange effects on electron impact elastic scattering with rare gas atoms and ions. It is found that, while the exchange effect generally plays a more important role than the polarization effect in the elastic scattering process, the exchange effect is less important on electron–ion collisions than on electron–atom collisions, especially for scattering in backward direction. In addition, our calculations show that, for electron–atom collisions at incident energies above 50 e V, both the polarization and exchange effects can be safely neglected, while for electron–ion collisions, both the polarization and exchange potentials do not make substantial contributions to the DCS at incident energies above 20 e V and scattering angles larger than 90?. Our investigation confirms the validity of the current LIED method.展开更多
The quark potential model is used to investigate the low-energy elastic scattering of πN system. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the harmonic oscillator c...The quark potential model is used to investigate the low-energy elastic scattering of πN system. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the harmonic oscillator confining potential. By means of the resonating group method, a nonlocal effective potential for the πN system is derived from the interquark potentials and used to calculate the πN elastic scattering phase shifts. By considering the effect of QCD renormalization, the suppression of the spin-orbital coupling and the contribution of the color octet of the clusters (qq) and (qqq), the numerical results are in fairly good agreement with the experimental data. The same model and method are employed to investigate the possible πN resonances. For this purpose, the resonating group equation is transformed into a standard Schrodinger equation in which the nonlocal effective πN interaction potential is included. Solving the Schrodinger equation by the variational method, we are able to reproduce the masses of some currently concerned πN resonances.展开更多
The elastic scattering properties in a mixture of sodium and cesium atoms are investigated at cold and ultracold temperatures. Based on the accurate interatomic potential for the NaCs mixture, the interspecies s-wave ...The elastic scattering properties in a mixture of sodium and cesium atoms are investigated at cold and ultracold temperatures. Based on the accurate interatomic potential for the NaCs mixture, the interspecies s-wave scattering lengths, the effective ranges and the p-wave scattering lengths are calculated by the quantal method and the semiclassical method, respectively. The s-wave scattering lengths are 512.7a0 for the singlet state and 33.4a0 for the triplet state. In addition, the spin-change and elastic cross sections are also calculated, and the g-wave shape resonance is found in the total elastic cross sections.展开更多
The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus....The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus. The a-folding potential with a standard Woods-Saxon type imaginary part, can reasonably describe experimental cross sections and the anomalous large angle scattering (ALAS) features. The anomaly of the a+^20Ne scattering system is further confirmed , in the lower incident energy region.展开更多
This paper uses the momentum-space optical potential method to calculate the e-H2O scattering elastic cross sections at the energy range from 6 eV to 50 eV, and the differential cross sections in the angle from 0 ...This paper uses the momentum-space optical potential method to calculate the e-H2O scattering elastic cross sections at the energy range from 6 eV to 50 eV, and the differential cross sections in the angle from 0 °to 180° at 40 eV and 50 eV. The polarisation is taken into account via an ab initio equivalent-local potential. The cross sections are compared with experimental measurements and other theoretical calculations.展开更多
Based on the α-particle model of ^12C nucleus, the differential cross sections for α-^12C elastic scattering at incident energy of 4.2 GeV have been calculated within the framework of Glauber multiple scattering the...Based on the α-particle model of ^12C nucleus, the differential cross sections for α-^12C elastic scattering at incident energy of 4.2 GeV have been calculated within the framework of Glauber multiple scattering theory. The results show that the main features of the measured angular distribution of the cross sections can be reasonably described. The parameterized α-α scattering amplitude, which is the basic input to construct the α-^12 C scattering Glauber amplitude in the a-particle model, is obtained by fitting the α-α scattering data.展开更多
The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential mode...The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential models, which are density-dependent, relativistic mean field, and hybrid model, respectively. It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K<SUP>?</SUP> nucleus elastic scattering.展开更多
基金supported by the Anhui Provincial Major Science and Technology Project(No.201903c08020003)the Taishan industrial Experts Program。
文摘The application of a controllable neutron source for measuring formation porosity in the advancement of nuclear logging has garnered increased attention.The existing porosity algorithm,which is based on the thermal neutron counting ratio,exhibits lower sensitivity in high-porosity regions.To enhance the sensitivity,the effects of elastic and inelastic scattering,which influence the slowing-down of fast neutrons,were theoretically analyzed,and a slowing-down model of fast neutrons was created.Based on this model,a density correction porosity algorithm was proposed based on the relationship between density,thermal neutron counting ratio,and porosity.Finally,the super multifunctional calculation program for nuclear design and safety evaluation(TopMC/SuperMC)was used to create a simulation model for porosity logging,and its applicability was examined.The results demonstrated that the relative error between the calculated and actual porosities was less than 1%,and the influence of deviation in the density measurement was less than 2%.Therefore,the proposed density correction algorithm based on the slowing-down model of fast neutrons can effectively improve the sensitivity in the high-porosity region.This study is expected to serve as a reference for the application of neutron porosity measurements with D–T neutron sources.
基金supported by the National Natural Science Foundation of China under Grant Nos.12174399,12147146 and 11934014by the Natural Science Foundation of Hainan Province under Grant No.122QN219+1 种基金through the Innovational Fund for Scientific and Technological Personnel of Hainan Provinceby the Natural Science Foundation of Shandong Provincial under Grant No.ZR2021QA046。
文摘The study of collision between metastable positronium(Ps)and antihydrogen(H)is crucial for precision experiments involving H.In this paper,we investigate the elastic scattering between H and Ps(2s)by combining the confined variational method with the projection method,for scattering energies from 0.0245 eV to 0.068 eV.Our calculations provide accurate phase shifts and cross sections for the 1,3S and 1,3P symmetries.Near the binding threshold,the rapid increase in the total cross section may be attributed to the P-wave resonance effect.Additionally,we determined the S-wave scattering lengths to be 9.34 a_(0)and 5.81 a_(0)for singlet and triplet elastic scattering,respectively.
基金supported by the National Natural Science Foundation of China(Nos.11490561,11635015,11961141003,11805280,11975316,12075045,12005304,U1867212,U1867214)the National Key Research and Development Project(Nos.2016YFA0400502,2018YFA0404404)+1 种基金the Continuous Basic Scientific Research Project(No.WDJC-2019-13)the Leading Innovation Project(Nos.LC192209000701,LC202309000201).
文摘The reaction dynamics of exotic nuclei near the drip line is one of the main research topics of current interest.Elastic scattering is a useful probe for investigating the size and surface diffuseness of exotic nuclei.The development of rare isotope accelerators offers opportunities for such studies.To date,many relevant measurements have been performed at accelerators using the projectile fragmentation technique,while the measurements at accelerators using isotope separator on-line(ISOL)systems are still quite scarce.In this work,we present the first proof-of-principle experiment with a post-accelerated ISOL beam at the Beijing Radioactive Ion Beam Facility(BRIF)by measuring the angular distribution of elastic scattering for the stable nucleus^(23)Na from the doubly magic nucleus^(40)Ca at energies above the Coulomb barrier.The angular distribution measured by a silicon strip detector array in a scattering chamber using the ISOL beam at BRIF is in good agreement with that measured by the high-precision Q3 D magnetic spectrograph using the nonISOL beam at nearly the same energy.This work provides useful background for making BRIF a powerful tool for the investigation of the reaction dynamics of exotic nuclei.
基金the National Natural Science Foundation of China(Nos.11635015,U1832130,and 11975040)the State Key Laboratory of Software Development Environment(SKLSDE-2020ZX-16)+1 种基金the Continuous Basic Scientific Research Project(No.WDJC-2019-13)the Leading Innovation Project(Nos.LC192209000701 and LC202309000201).
文摘A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was performed to explore the effects of beam drifts in different directions and distances on the angular distribution of the Rutherford scattering,as measured by the detector array.The results indicate that when the beam drift distance is less than 2.0 mm,the symmetry of the detector array can maintain a count error of less than 5%.This confirms the property of the detector array for RIB experiments.Furthermore,the simulation was validated through the elastic scattering angular distributions of 6;7 Li measured by the detector array in 6;7Li t209 Bi experiments at different energies.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10647002 and 10565001 and the Science Foundation of Guangxi Province of China under Grant Nos. 0481030, 0542042, and 0575020
文摘We propose QCD inspired model to calculate ^-pp and pp elastic scatterings at high energies in this paper. A calculation for total cross section of ^-pp and pp is performed in which the contributions from gluon-gluon, quark-quark, and gluon-quark interactions are included. Our results show that the QCD inspired model gives a perfect fit to experimental data of total cross section both for ^-pp and pp elastic scatterings at the whole energy region where experimental data existed at FNAL and CERN.
基金Prof.Dao T.Khoa of the Institute for Nuclear Science and Technology(INST),Vietnam,is specially and gratefully acknowledged for providing helpful academic materials and excellent guidance in this work.
文摘In this paper,a new M3Y-type effective nucleon–nucleon interaction,derived based on the lowest order constrained variational approach(LOCV)and termed B3Y-Fetal,has been used in DDM3Y1,BDM3Y1,BDM3Y2,and BDM3Y3 density-dependent versions in a heavy ion(HI)optical potential based on four types of a real folded potential and a phenomenological Woods–Saxon imaginary potential to study the elastic scattering of the^(16)O+^(16)O nuclear system within the framework of the optical model(OM)by computing the associated differential cross sections at various incident energies.The results of the folding analyses have shown the DDB3Y1-Fetal and BDB3Y1-Fetal,out of the four folded potentials,give a reasonably better description of the elastic data of the nuclear system.These best-fit folded potentials are followed,in performance,by the BDB3Y2-Fetal,with the BDB3Y3-Fetal potential coming last.This performance trend was also demonstrated by the optical potentials based on the M3Y-Reid interaction.Furthermore,the best-fit folded potentials,renormalized by a factor NRof approximately 0.9,have been shown to reproduce the energy dependence of the real optical potential for^(16)O scattering found in previous optical model analyses creditably well.In excellent agreement with previous works,they have also been identified in this work to belong to the family of deep refractive potentials because they have been able to reproduce and consistently describe the evolution of Airylike structures,at large scattering angles,observed in the^(16)O scattering data at different energies.Finally,a comparison of the performances of B3Y-Fetal and M3Y-Reid effective interactions undertaken in this work has shown impressive agreement between them.
文摘A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10247004, 10565001 and the Science Foundation of Guangxi Province of China under Grant Nos. 0481030, 0575020 and 0542042
文摘We initially propose a Reggeon-Pomeron exchange model to describe proton-proton elastic scattering at high energies in this short paper. A calculation for total cross section of proton-proton elastic scattering at high energies is performed without any free parameters. Our new finding from this work is that the Reggeon-Pomeron model gives a perfect fit to experimental data of the total cross section at the whole energy region where experimental data exist.
基金The project supported by National Natural Science Foundation of China under Grant No. 10125521, the 973 State Key Basic Research and Development Program of China under Grant No. G2000077400, the CAS Knowledge Innovation Project under Grant No. KJCX2-SW- N02, and the Research Fand of Higher Education under Grant No. 20010284036
文摘The elastic scattering of p-^14Be system at Elab = 200 MeV is evaluated within the relativistic impulse approximation. We discuss the effects of the halo neutrons on the three observables of the elastic scattering system, such as differential cross section dσ/ dΩ, analyzing power Ay and spin rotation Q. The results of the three observables of the elastic scattering of p-^14Be system are compared with those of p-^12C and p-^16O systems at the same energy as E1ab = 200 MeV. We have found that in the small angular region the Ay and Q, as well as dσ/dΩ, are quite sensitive to the nucleon density distributions on the surface of the target nucleus and offer some unique behaviors of halo nuclei.
基金The project supported in part by National Natural Science Foundation of China under Crant Nos.10565001 and 10647002the Natural Science Foundation of Guangxi Province under Grant Nos.0575020,0542042,and 0481030Guangxi University under Grant No.x051001
文摘Based on the quark-gluon structure of nucleon and the existence of Odderon in nucleon via gluon selfinteraction, the elastic scattering of pp at high energies is studied. Our theoretical predictions reproduce experimental data perfectly. The contributions from individual terms of quark-quark, gluon-gluon interactions, quark-gluon interference and the Odderon terms to total cross section are analyzed. In addition to the leading quark-quark contribution, the Odderon contribution is quite important. In particular, the Odderon plays an essential role in fitting to data. Therefore, We may claim that the high energy pp and pp elastic scattering may be good processes to search for the Odderon, the three Reggeized gluon bound states.
文摘In the present paper, the elastic scattering of6 Li + 209 Bi system is reanalyzed by using the double folding model (DFM) at energies near the Coulomb barrier (ELab=29.9 and 32.8 MeV). With this goal, a new density distribution of6 Li nucleus, the no-core full configuration (NCFC) density distribution (DD), is used to obtain the real potentials in DFM calculations. The NCFC DD results are compared with the results of both gaussian shape (GS) DD and an earlier study as well as the experimental data. This comparison provides information about the similarities and differences of the models used in calculations.
基金Project supported by the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2008HASTIT008)the National Natural Science Foundation of China (Grant Nos. 60777012 and 10874064)
文摘An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z, in the valence range. The potential is used to investigate the elastic scattering of two N atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and the shape of total elastic cross section curve is mainly dominated by the s-partial wave at very low collision energies. Three shape resonances are found in the total elastic cross sections. Concretely, the first one is very sharp and strong. It results from the g-partial-wave contribution and the resonant energy is 3.645 × 10^-6 a.u. The second one is contributed by the h-partial wave and the resonant energy is 1.752 × 10^-5 a.u. This resonance is broadened by those from the d- and f-partial waves. The third one comes from the l = 6 partial wave contribution and the resonant energy is 3.522 × 10^-5 a.u. This resonance is broadened by those from the g- and h-partial waves. The N2(X1∑g+) molecular parameters, which are determined at the current theoretical level, achieve very high accuracy due to the employment of the largest correlation-consistent basis set in the valence range.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the STU Scientific Research Foundation for Talentsthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section(DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘Laser-induced electron diffraction(LIED), in which elastic scattering of the returning electron with the parent ion takes place, has been used to extract atomic potential and image molecular structures with sub-?A precision and exposure time of a few femtoseconds. So far, the polarization and exchange effects have not been taken into account in the theoretical calculation of differential cross section(DCS) for the laser-induced rescattering processes. However, the validity of this theoretical treatment has never been verified. In this work, we investigate the polarization and exchange effects on electron impact elastic scattering with rare gas atoms and ions. It is found that, while the exchange effect generally plays a more important role than the polarization effect in the elastic scattering process, the exchange effect is less important on electron–ion collisions than on electron–atom collisions, especially for scattering in backward direction. In addition, our calculations show that, for electron–atom collisions at incident energies above 50 e V, both the polarization and exchange effects can be safely neglected, while for electron–ion collisions, both the polarization and exchange potentials do not make substantial contributions to the DCS at incident energies above 20 e V and scattering angles larger than 90?. Our investigation confirms the validity of the current LIED method.
基金The project supported by National Natural Science Foundation of China under Grant No.10675054
文摘The quark potential model is used to investigate the low-energy elastic scattering of πN system. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the harmonic oscillator confining potential. By means of the resonating group method, a nonlocal effective potential for the πN system is derived from the interquark potentials and used to calculate the πN elastic scattering phase shifts. By considering the effect of QCD renormalization, the suppression of the spin-orbital coupling and the contribution of the color octet of the clusters (qq) and (qqq), the numerical results are in fairly good agreement with the experimental data. The same model and method are employed to investigate the possible πN resonances. For this purpose, the resonating group equation is transformed into a standard Schrodinger equation in which the nonlocal effective πN interaction potential is included. Solving the Schrodinger equation by the variational method, we are able to reproduce the masses of some currently concerned πN resonances.
基金Project supported by the National Natural Science Foundation of China (Grant No.10874064)the National Science Foundation of Henan Province,China (Grant No.2011A140017)the Youth Foundation of Henan Normal University,China (Grant No.2010qk03)
文摘The elastic scattering properties in a mixture of sodium and cesium atoms are investigated at cold and ultracold temperatures. Based on the accurate interatomic potential for the NaCs mixture, the interspecies s-wave scattering lengths, the effective ranges and the p-wave scattering lengths are calculated by the quantal method and the semiclassical method, respectively. The s-wave scattering lengths are 512.7a0 for the singlet state and 33.4a0 for the triplet state. In addition, the spin-change and elastic cross sections are also calculated, and the g-wave shape resonance is found in the total elastic cross sections.
基金Supported by National Natural Science Foundation of China under Grant No.10865002
文摘The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus. The a-folding potential with a standard Woods-Saxon type imaginary part, can reasonably describe experimental cross sections and the anomalous large angle scattering (ALAS) features. The anomaly of the a+^20Ne scattering system is further confirmed , in the lower incident energy region.
文摘This paper uses the momentum-space optical potential method to calculate the e-H2O scattering elastic cross sections at the energy range from 6 eV to 50 eV, and the differential cross sections in the angle from 0 °to 180° at 40 eV and 50 eV. The polarisation is taken into account via an ab initio equivalent-local potential. The cross sections are compared with experimental measurements and other theoretical calculations.
基金National Natural Science Foundation of China under Grant No.10465001
文摘Based on the α-particle model of ^12C nucleus, the differential cross sections for α-^12C elastic scattering at incident energy of 4.2 GeV have been calculated within the framework of Glauber multiple scattering theory. The results show that the main features of the measured angular distribution of the cross sections can be reasonably described. The parameterized α-α scattering amplitude, which is the basic input to construct the α-^12 C scattering Glauber amplitude in the a-particle model, is obtained by fitting the α-α scattering data.
文摘The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential models, which are density-dependent, relativistic mean field, and hybrid model, respectively. It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K<SUP>?</SUP> nucleus elastic scattering.