期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Robust elastic impedance inversion using L1-norm misfit function and constraint regularization 被引量:1
1
作者 潘新朋 张广智 +3 位作者 宋佳杰 张佳佳 王保丽 印兴耀 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期227-235,共9页
The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution.... The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution. So we have developed a more robust elastic impedance inversion based on the Ll-norm misfit function, and the noise is assumed to be non-Gaussian. Meanwhile, some regularization methods including the sparse constraint regularization and elastic impedance point constraint regularization are incorporated to improve the ill-posed characteristics of the seismic inversion problem. Firstly, we create the Ll-norm misfit objective function of pre-stack inversion problem based on the Bayesian scheme within the sparse constraint regularization and elastic impedance point constraint regularization. And then, we obtain more robust elastic impedances of different angles which are less sensitive to outliers in seismic data by using the IRLS strategy. Finally, we extract the P-wave and S-wave velocity and density by using the more stable parameter extraction method. Tests on synthetic data show that the P-wave and S-wave velocity and density parameters are still estimated reasonable with moderate noise. A test on the real data set shows that compared to the results of the classical elastic impedance inversion method, the estimated results using the proposed method can get better lateral continuity and more distinct show of the gas, verifying the feasibility and stability of the method. 展开更多
关键词 elastic impedance (EI) inversion Ll-norm misfit function sparse constraint regularization elastic impedance point constraint regularization IRLS strategy
在线阅读 下载PDF
SEMI-SUPERVISED RADIO TRANSMITTER CLASSIFICATION BASED ON ELASTIC SPARSITY REGULARIZED SVM 被引量:2
2
作者 Hu Guyu Gong Yong +2 位作者 Chen Yande Pan Zhisong Deng Zhantao 《Journal of Electronics(China)》 2012年第6期501-508,共8页
Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which... Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which can be obtained much easier, a novel semi-supervised classification method named Elastic Sparsity Regularized Support Vector Machine (ESRSVM) is proposed for radio transmitter classification. ESRSVM first constructs an elastic-net graph over data samples to capture the robust and natural discriminating information and then incorporate the information into the manifold learning framework by an elastic sparsity regularization term. Experimental results on 10 GMSK modulated Automatic Identification System radios and 15 FM walkie-talkie radios show that ESRSVM achieves obviously better performance than KNN and SVM, which use only labeled samples for classification, and also outperforms semi-supervised classifier LapSVM based on manifold regularization. 展开更多
关键词 Radio transmitter recognition Cyclic spectrum density Semi-supervised classification elastic Sparsity Regularized Support Vector Machine (ESRSVM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部