The latest view suggests the inactive core,surface pulverization,and poly sulfide shuttling effect of metal sulfides are responsible for their low capacity and poor cycling performance in sodium-ion batteries(SIBs).Wh...The latest view suggests the inactive core,surface pulverization,and poly sulfide shuttling effect of metal sulfides are responsible for their low capacity and poor cycling performance in sodium-ion batteries(SIBs).Whereas overcoming the above problems based on conventional nanoengineering is not efficient enough.In this work,erythrocyte-like CuS microspheres with an elastic buffering layer of ultrathin poly aniline(PANI) were synthesized through one-step selfassembly growth,followed by in situ polymerization of aniline.When CuS@PANI is used as anode electrode in SIBs,it delivers high capacity,ultrahigh rate capability(500 mAh gat 0.1 A g,and 214.5 mAh gat 40 A g),and superior cycling life of over 7500 cycles at 20 A g.A series of in/ex situ characterization techniques were applied to investigate the structural evolution and sodium-ion storage mechanism.The PANI swollen with electrolyte can stabilize solid electrolyte interface layer,benefit the ion transport/charge transfer at the PANI/electrolyte interface,and restrain the size growth of Cu particles in confined space.Moreover,finite element analyses and density functional simulations confirm that the PANI film effectively buffers the volume expansion,suppresses the surface pulverization,and traps the poly sulfide.展开更多
In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communicat...In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communication efficiency.With regard to the complex and large scale NoC,simple and efficient routing nodes are the critical factors to achieve low-cost and low-congestion communication performance.This paper proposes an unbuffered switch architecture and makes detailed analysis of the mechanism of buffer in the switch architecture.According to the simulation results,the S-mesh using the unbuffered switch architecture is better in terms of the optimal performance in message latency than some typical NoC architectures,such as 2D-mesh,Fat-tree,Butterfly,Octagon and so on.The synthesis results of design compiler indicate that the unbuffered switch has obvious advantages of achieving cost and operating speed for the chips.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(NSFC.U1904190,51925207,U1910210,52161145101 and 51872277)the Natural Science Foundation for Excellent Young Scholars of Henan Province(Grant No.212300410091)+5 种基金Program for Science and Technology Innovation Talents in Universities of Henan Province(Grant No.22HASTIT005)Key Program of Henan Province for Science and Technology(222102240029)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA21000000)the National Synchrotron Radiation Laboratory(KY2060000173)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Grant.YLU-DNL Fund 2021002)the Fundamental Research Funds for the Central Universities(WK2060140026).
文摘The latest view suggests the inactive core,surface pulverization,and poly sulfide shuttling effect of metal sulfides are responsible for their low capacity and poor cycling performance in sodium-ion batteries(SIBs).Whereas overcoming the above problems based on conventional nanoengineering is not efficient enough.In this work,erythrocyte-like CuS microspheres with an elastic buffering layer of ultrathin poly aniline(PANI) were synthesized through one-step selfassembly growth,followed by in situ polymerization of aniline.When CuS@PANI is used as anode electrode in SIBs,it delivers high capacity,ultrahigh rate capability(500 mAh gat 0.1 A g,and 214.5 mAh gat 40 A g),and superior cycling life of over 7500 cycles at 20 A g.A series of in/ex situ characterization techniques were applied to investigate the structural evolution and sodium-ion storage mechanism.The PANI swollen with electrolyte can stabilize solid electrolyte interface layer,benefit the ion transport/charge transfer at the PANI/electrolyte interface,and restrain the size growth of Cu particles in confined space.Moreover,finite element analyses and density functional simulations confirm that the PANI film effectively buffers the volume expansion,suppresses the surface pulverization,and traps the poly sulfide.
基金Supported by the National High Technology Research and Development Program of China(No.2009AA01Z105)the Ministry of EducationIntel Special Foundation for Information Technology(No.MOE-INTEL-08-05)the Postdoctoral Science Foundation of China(No.20080440942,200902432)
文摘In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communication efficiency.With regard to the complex and large scale NoC,simple and efficient routing nodes are the critical factors to achieve low-cost and low-congestion communication performance.This paper proposes an unbuffered switch architecture and makes detailed analysis of the mechanism of buffer in the switch architecture.According to the simulation results,the S-mesh using the unbuffered switch architecture is better in terms of the optimal performance in message latency than some typical NoC architectures,such as 2D-mesh,Fat-tree,Butterfly,Octagon and so on.The synthesis results of design compiler indicate that the unbuffered switch has obvious advantages of achieving cost and operating speed for the chips.