期刊文献+
共找到45,455篇文章
< 1 2 250 >
每页显示 20 50 100
Clinical observation on prognosis of mixed hemorrhoids treated with polidocanol injection combined with automatic elastic thread ligation operation 被引量:1
1
作者 Yan-Mei Huang Dong Ouyang 《World Journal of Gastrointestinal Surgery》 2025年第1期209-216,共8页
BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different tre... BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different treatment options.AIM To analyze the clinical effect and prognosis of mixed hemorrhoids treated with polidocanol injection combined with automatic elastic thread ligation operation(RPH).METHODS A total of 100 patients with mixed hemorrhoids who visited our hospital from October 2022 to September 2023 were selected and randomly divided into the control group(n=50)and the treatment group(n=50)by rolling the dice.The procedure for prolapse and hemorrhoids(PPH)was adopted in the control group,while polidocanol foam injection+RPH was adopted in the treatment group.The therapeutic effects,operation time,wound healing time,hospital stay,pain situation(24 hours post-operative pain score,first defecation pain score),quality of life(QOL),incidence of complications(post-operative hemorrhage,edema,infection),incidence of anal stenosis 3 months post-operatively and recurrence rate 1 year post-operatively of the two groups were compared.RESULTS Compared with the control group,the total effective rate of treatment group was higher,and the difference was significant(P<0.05).The operation time/wound healing time/hospital stay in the treatment group were shorter than those in the control group(P<0.05).The pain scores at 24 hours after operation/first defecation pain score of the treatment group was significantly lower than those in the control group(P<0.05).After surgery,the QOL scores of the two groups decreased,with the treatment group having higher scores than that of the control group(P<0.05).Compared with the control group,the incidence of postoperative complications in the treatment group was lower,and the difference was significant(P<0.05);However,there was no significant difference in the incidence of postoperative bleeding between the two groups(P>0.05);There was no significant difference in the incidence of anal stenosis 3 months after operation and the recurrence rate 1 year after operation between the two groups(P>0.05).CONCLUSION For patients with mixed hemorrhoids,the therapeutic effect achieved by using polidocanol injection combined with RPH was better.The wounds of the patients healed faster,the postoperative pain was milder,QOL improved,and the incidence of complications was lower,and the short-term and long-term prognosis was good. 展开更多
关键词 Mixed hemorrhoids Polidocanol injection Automatic elastic thread ligation operation Postoperative hemorrhage The degree of pain Recurrent rate
暂未订购
基于HDFS与Elastic Search的网络信息安全检测技术研究
2
作者 马力 李丽 《自动化与仪器仪表》 2025年第4期16-19,24,共5页
对网络信息安全检测问题进行研究,提出一种基于改进VGG19的异常检测模型,构建基于HDFS与Elastic Search网络信息安全检测系统对Web日志进行异常检测,并将检测结果进行可视化展示。首先,针对传统VGG19卷积神经网络的不足进行改进,并采用... 对网络信息安全检测问题进行研究,提出一种基于改进VGG19的异常检测模型,构建基于HDFS与Elastic Search网络信息安全检测系统对Web日志进行异常检测,并将检测结果进行可视化展示。首先,针对传统VGG19卷积神经网络的不足进行改进,并采用改进后的VGG19网络构建异常检测模型;然后将构建的异常检测模型部署到基于HDFS与Elastic Search网络信息安全检测系统中;最后采用Filebeat日志数据收集工具对互联网用户的访问日志进行采集并构建数据集,对构建的异常检测模型进行测试。测试结果表明:基于改进VGG19的异常检测模型在训练过程中,F1值为0.91、精确率为92.55%,在测试集上的平均检测准确率为94%、检测时间平均为0.25 s,检测精度高、检测速度快,适用于构建的网络信息安全检测系统。 展开更多
关键词 网络信息安全检测 VGG19网络 HDFS elastic Search
原文传递
Characterization of elastic modulus and hardness of brittle solids by instrumented indentation
3
作者 Zhitong Xu Ming Liu Jianghong Gong 《Acta Mechanica Sinica》 2025年第1期141-162,共22页
The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis ... The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT). 展开更多
关键词 Brittle solids NANOINDENTATION elastic modulus HARDNESS elastic recovery of Knoop imprint
原文传递
Resource Optimization in Elastic Optical Networks Using Threshold-Based Routing and Fragmentation-Aware Spectrum Allocation
4
作者 Kamagaté Beman Hamidja Kanga Koffi +2 位作者 Coulibaly Kpinan Tiekoura Konaté Adama Michel Babri 《Open Journal of Applied Sciences》 2025年第1期168-186,共19页
This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocatio... This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times. 展开更多
关键词 elastic Optical Networks (EONs) Spectrum Fragmentation Routing and Spectrum Allocation (RSA) Connection Rerouting HEURISTIC
在线阅读 下载PDF
Unlocking the elasticity in ferroelectrics by slight crosslinking
5
作者 Fangzhou Li Liang Gao +1 位作者 Linping Wang Ben-Lin Hu 《Chinese Journal of Structural Chemistry》 2025年第3期15-17,共3页
Elastic electronics are increasingly prevalent in information storage,smart sensing and health monitoring due to their softness,stretchability and portability.Wearable electronic devices should possess elasticity and ... Elastic electronics are increasingly prevalent in information storage,smart sensing and health monitoring due to their softness,stretchability and portability.Wearable electronic devices should possess elasticity and stretchability that align with biological tissues.Specifically,their materials should be capable of elastic strain up to 50–80%,while the devices themselves must maintain electric stability under strains that accommodate body movements[1]. 展开更多
关键词 biological tissuesspecificallytheir maintain electric stability FERROELECTRICS health monitoring elasticITY information storagesmart sensing elastic electronics CROSSLINKING
原文传递
Elastic scattering of metastable positronium from antihydrogen
6
作者 Yi Zhang Jun-Yi Zhang 《Communications in Theoretical Physics》 2025年第7期187-192,共6页
The study of collision between metastable positronium(Ps)and antihydrogen(H)is crucial for precision experiments involving H.In this paper,we investigate the elastic scattering between H and Ps(2s)by combining the con... The study of collision between metastable positronium(Ps)and antihydrogen(H)is crucial for precision experiments involving H.In this paper,we investigate the elastic scattering between H and Ps(2s)by combining the confined variational method with the projection method,for scattering energies from 0.0245 eV to 0.068 eV.Our calculations provide accurate phase shifts and cross sections for the 1,3S and 1,3P symmetries.Near the binding threshold,the rapid increase in the total cross section may be attributed to the P-wave resonance effect.Additionally,we determined the S-wave scattering lengths to be 9.34 a_(0)and 5.81 a_(0)for singlet and triplet elastic scattering,respectively. 展开更多
关键词 elastic scattering POSITRONIUM ANTIHYDROGEN
原文传递
Indentation of a Plate on a Thin Transversely Isotropic Elastic Layer
7
作者 Juyao Li Guozheng Zhang +1 位作者 Liu Wang Zhaohe Dai 《Acta Mechanica Solida Sinica》 2025年第2期331-340,共10页
This work investigates the indentation response of an elastic plate resting upon a thin,transversely isotropic elastic layer supported by a rigid substrate.Such a scenario is encountered across a range of length scale... This work investigates the indentation response of an elastic plate resting upon a thin,transversely isotropic elastic layer supported by a rigid substrate.Such a scenario is encountered across a range of length scales from piezoresistive tests on graphite nanoflakes to the bending of floating ice shelves atop seabed,where the elastic layer commonly exhibits certain anisotropy.We first develop an approximate model to describe the elastic response of a transversely isotropic layer by exploiting the slenderness of the layer.We show that this approximate model can be reduced to the classic compressible Winkler foundation model as the elastic constants of the layer are set isotropic.We then investigate the combined response of an elastic plate on the transversely isotropic elastic layer.Facilitated by the simplicity of our proposed approximate model,we can derive simple analytical solutions for the cases of small and large indenter radi.The analytical results agree well with numerical calculations obtained via finite element methods,as long as the system is sufficiently slender in a mechanical sense.These results offer quantitative insights into the mechanical behavior of numerous semiconductor materials characterized by transverse isotropy and employed with slender geometries in various practical applications where the thin layer works as conductive and functional layers. 展开更多
关键词 INDENTATION elastic layers-Transversely isotropic Winkler foundation GRAPHITE
原文传递
Finite Element Analysis of Inclusion Stiffness and Interfacial Debonding on the Elastic Modulus and Strength of Rubberized Mortar
8
作者 Cristian Martínez-Fuentes Pedro Pesante +1 位作者 Karin Saavedra Paul Oumaziz 《Computers, Materials & Continua》 2025年第10期581-595,共15页
Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modu... Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete.This study employs finite element simulations to investigate the elastic properties of rubberized mortar(RuM),considering the influence of inclusion stiffness and interfacial debonding.Different homogenization schemes,including Voigt,Reuss,and mean-field approaches,are implemented using DIGIMAT and ANSYS.Furthermore,the influence of the interfacial transition zone(ITZ)between mortar and rubber is analyzed by periodic homogenization.Subsequently,the influence of the ITZ is examined through a linear fracture analysis with the stress intensity factor as a key parameter,using the ANSYS SMART crack growth tool.Finally,a non-linear study in FEniCS is carried out to predict the strength of the composite material through a compression test.Comparisons with high density polyethylene(HDPE)and gravel inclusions show that increasing inclusion stiffness enhances compressive strength far more effectively than simply improving the mortar/rubber bond.Indeed,when the inclusions are much softer than the surrounding matrix,any benefit gained on the elastic modulus or strength from stronger interfacial adhesion becomes almost negligible.This study provide numerical evidence that tailoring the rubber’s intrinsic stiffness—not merely strengthening the rubber/mortar interface—is a decisive factor for improving the mechanical performance of RuM. 展开更多
关键词 Rubberized mortar elastic modulus compression strength DEBONDING
在线阅读 下载PDF
Shale weak cementation model and elastic modulus prediction based on nanoindentation experiment
9
作者 Jian-Bo Wang Yang-Yang Zhang +4 位作者 Jian-Tong Liu Xiao-Di Li Bo Zhou Yuan-Kai Zhang Bao-Xing Liang 《Petroleum Science》 2025年第5期2123-2141,共19页
The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on unders... The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on understanding the mechanical properties of reservoir rocks.Therefore,it is critical to obtain the reservoir mechanical parameters quickly,efficiently,and inexpensively.In this study,shale samples were collected from three basins in Southwest China,and the elastic modulus of shale in the indentation depth range of 0-5000 nm was obtained by nanoindentation experiments.Experimental results showed that different indentation depths had different physical characteristics.The shallower depths had the mechanical properties of single minerals,while the deeper depths had the mechanical properties of a multi-mineral composite.The difference between the two represented the cementation strength between the mineral particles.The error between the calculation results of the existing equivalent medium theoretical model and experimental data reached 324%.In this study,a weak cementation model was adopted,and three parameters obtained by nanoindentation experiments were considered:the soft component volume content,intergranular cementation strength,and mineral particle size.This solved the problem of assuming rather than calculating the values of some parameters in the existing model and realized the prediction of the macroscopic mechanical parameters of shale.The calculation error was reduced to less than 20%,and the test method and calculation model can be popularized and applied in engineering. 展开更多
关键词 SHALE NANOINDENTATION Multiscale Weak cementation model elastic modulus
原文传递
Beyond Classical Elasticity:A Review of Strain Gradient Theories,Emphasizing Computer Modeling,Physical Interpretations,and Multifunctional Applications
10
作者 Shubham Desai Sai Sidhardh 《Computer Modeling in Engineering & Sciences》 2025年第8期1271-1334,共64页
The increasing integration of small-scale structures in engineering,particularly in Micro-Electro-Mechanical Systems(MEMS),necessitates advanced modeling approaches to accurately capture their complex mechanical behav... The increasing integration of small-scale structures in engineering,particularly in Micro-Electro-Mechanical Systems(MEMS),necessitates advanced modeling approaches to accurately capture their complex mechanical behavior.Classical continuum theories are inadequate at micro-and nanoscales,particularly concerning size effects,singularities,and phenomena like strain softening or phase transitions.This limitation follows from their lack of intrinsic length scale parameters,crucial for representingmicrostructural features.Theoretical and experimental findings emphasize the critical role of these parameters on small scales.This review thoroughly examines various strain gradient elasticity(SGE)theories commonly employed in literature to capture these size-dependent effects on the elastic response.Given the complexity arising from numerous SGE frameworks available in the literature,including first-and second-order gradient theories,we conduct a comprehensive and comparative analysis of common SGE models.This analysis highlights their unique physical interpretations and compares their effectiveness in modeling the size-dependent behavior of low-dimensional structures.A brief discussion on estimating additional material constants,such as intrinsic length scales,is also included to improve the practical relevance of SGE.Following this theoretical treatment,the review covers analytical and numerical methods for solving the associated higher-order governing differential equations.Finally,we present a detailed overview of strain gradient applications in multiscale andmultiphysics response of solids.Interesting research on exploring the relevance of SGE for reduced-order modeling of complex macrostructures,a universal multiphysics coupling in low-dimensional structures without being restricted to limited material symmetries(as in the case of microstructures),is also presented here for interested readers.Finally,we briefly discuss alternative nonlocal elasticity approaches(integral and integro-differential)for incorporating size effects,and conclude with some potential areas for future research on strain gradients.This review aims to provide a clear understanding of strain gradient theories and their broad applicability beyond classical elasticity. 展开更多
关键词 Strain gradient nonlocal elasticity size effects MICROSTRUCTURE multiphysics coupling
在线阅读 下载PDF
Corrigendum to“Elastic properties of Cu–6wt%Ag alloy wires for pulsed magnets investigated by ultrasonic techniques”
11
作者 Ziyu Li Tianyi Gu +12 位作者 Wenqi Wei Yang Yuan Zhuo Wang Kangjian Luo Yupeng Pan Jianfeng Xie Shaozhe Zhang Tao Peng Lin Liu Qi Chen Xiaotao Han Yongkang Luo Liang Li 《Chinese Physics B》 2025年第4期625-625,共1页
Figure 3 in the paper[Chin.Phys.B 34020701(2025)]contains an axis labeling error.The revised figure is provided.This modification does not affect the result presented in the paper.
关键词 high-field magnet Cu-Ag alloy ultrasonic techniques elastic constants
原文传递
Theoretical Study and Slip Effect Analysis of Elastic Calculation Methods for Steel-Concrete Composite Beams
12
作者 Shaohui Chu Xiangkai Zeng Zhixin Guo 《Journal of World Architecture》 2025年第5期67-74,共8页
Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bear... Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value. 展开更多
关键词 Composite beam elastic calculation Slip effect Theoretical study
在线阅读 下载PDF
First-principles calculations to investigate the structural,elastic and thermodynamic properties of full-Heusler MgXY_(2)(X=Zn,Cd,Y=Ag,Au,Cu)compounds
13
作者 TahsinÖzer MuratÇanlı +1 位作者 Nihat Arıkan Ali IhsanÖztürkd 《Journal of Magnesium and Alloys》 2025年第5期2295-2306,共12页
Magnesium and its compounds are recognized as favorable materials for structural uses,primarily due to their lightweight nature and remarkable specific strength.This research employed first-principles methodologies to... Magnesium and its compounds are recognized as favorable materials for structural uses,primarily due to their lightweight nature and remarkable specific strength.This research employed first-principles methodologies to investigate how pressure affects the crystal structure along with the elastic and thermodynamic characteristics of MgXY_(2)(X=Zn,Cd,and Y=Ag,Au,Cu)compounds.All analyses were implemented via the Perdew-Burke-Ernzerhof variant of the Generalized Gradient Approximation alongside a plane-wave ultrasoft pseudopotential approach.The findings on the elastic constants indicated that these MgXY_(2)compounds have maintained their stability at pressures up to 500 kBar.These constants informed detailed assessments of properties like elastic modulus,Poisson’s ratio,Vickers hardness,and material anisotropy.The Quantum Espresso software was utilized to calculate melting points,Debye temperature,and minimum thermal conductivity values.A temperature range spanning from 0 to 800 K allowed for an evaluation of vibrational energy,free energy,entropy,and specific heat capacity metrics.The anticipated physical attributes suggest significant potential for these magnesium compounds in biomedical fields. 展开更多
关键词 HEUSLER elastic properties Mechanical properties Thermodynamic properties Quantum espresso
在线阅读 下载PDF
Partly clumped-particles for elastic mismatch of minerals and joint planes for schist: A numerical simulation of DanBa quartz mica schist
14
作者 Xiao-Ping Zhang Shunchuan Wu Sijing Wang 《Deep Resources Engineering》 2025年第1期25-37,共13页
A partly clumped-particles combined with joint planes model was developed to simulate the microstructure of quartz mica schist.It considers grain-scale heterogeneity including microgeometry heterogeneity and grain-sca... A partly clumped-particles combined with joint planes model was developed to simulate the microstructure of quartz mica schist.It considers grain-scale heterogeneity including microgeometry heterogeneity and grain-scale elastic heterogeneity.Clumped-particles with larger volume and larger stiffness were used to represent stiff minerals such as quartz,the rest of unclumped particles with smaller stiffness were used to represent soft minerals such as mica.The joint planes,which have smaller stiffness and strength than mica,were used to describe schist.The extensive sensitivity studies have shown that the clump’s radius,clump’s content and joint plane’s strength affect the microscopic and macroscopic behaviors of sample.For DanBa quartz mica schist,the model calibrated uniaxial tests and well matched with the stress-strain curves,crack initiation stress and crack damage stress of laboratory test. 展开更多
关键词 elastic mismatch SCHIST Particle element simulation Uniaxial compressive test
在线阅读 下载PDF
Aeromagnetic Compensation Method Based on Recursive Least Square and Elastic Weight Consolidation
15
作者 Ma Xiao-Yu Zhang Jin-Sheng +2 位作者 Liao Shou-Yi Li Ting Li Ze-Hao 《Applied Geophysics》 2025年第2期279-290,555,共13页
Aeromagnetic compensation is one of the key issues in high-precision geomagnetic fl ight carrier navigation, directly determining the accuracy and reliability of real-time magnetic measurement data. The accurate model... Aeromagnetic compensation is one of the key issues in high-precision geomagnetic fl ight carrier navigation, directly determining the accuracy and reliability of real-time magnetic measurement data. The accurate modeling and compensation of interference magnetic measurements on carriers are of great signifi cance for the construction of reference and real-time maps for geomagnetic navigation. Current research on aeromagnetic compensation algorithms mainly focuses on accurately modeling interference magnetic fields from model- and data-driven perspectives based on measured aeromagnetic data. Challenges in obtaining aeromagnetic data and low information complexity adversely aff ect the generalization performance of a constructed model. To address these issues, a recursive least square algorithm based on elastic weight consolidation is proposed, which eff ectively suppresses the occurrence of catastrophic forgetting by controlling the direction of parameter updates. Experimental verifi cation with publicly available aeromagnetic datasets shows that the proposed algorithm can eff ectively circumvent historical information loss caused by interference magnetic field models during parameter updates and improve the stability, robustness, and accuracy of interference magnetic fi eld models. 展开更多
关键词 Geomagnetic navigation Aeromagnetic interference compensation Recursive least squares elastic weight consolidation
在线阅读 下载PDF
Elastic properties of Cu–6wt% Ag alloy wires for pulsed magnets investigated by ultrasonic techniques
16
作者 Ziyu Li Tianyi Gu +12 位作者 Wenqi Wei Yang Yuan Zhuo Wang Kangjian Luo Yupeng Pan Jianfeng Xie Shaozhe Zhang Tao Peng Lin Liu Qi Chen Xiaotao Han Yongkang Luo Liang Li 《Chinese Physics B》 2025年第2期90-95,共6页
Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we... Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids. 展开更多
关键词 high-field magnet Cu–Ag alloy ultrasonic techniques elastic constants
原文传递
An incremental contact model for line contact of elastic rough surfaces
17
作者 Sihe Wang Weike Yuan +1 位作者 Xuanming Liang Gangfeng Wang 《Acta Mechanica Sinica》 2025年第4期97-106,共10页
In this paper,an incremental contact model is developed for the elastic self-affine fractal rough surfaces under plane strain condition.The contact between a rough surface and a rigid plane is simplified by the accumu... In this paper,an incremental contact model is developed for the elastic self-affine fractal rough surfaces under plane strain condition.The contact between a rough surface and a rigid plane is simplified by the accumulation of identical line contacts with half-width given by the truncated area divided by the contact patch number at varying heights.Based on the contact stiffness of two-dimensional flat punch,the total stiffness of rough surface is estimated,and then the normal load is calculated by an incremental method.For various rough surfaces,the approximately linear load-area relationships predicted by the proposed model agree well with the results of finite element simulations.It is found that the real average contact pressure depends significantly on profile properties. 展开更多
关键词 elastic line contact Rough surfaces Contact area Incremental contact model
原文传递
An efficient and high-precision algorithm for solving multiple deformation modes of elastic beams
18
作者 Yunzhou WANG Binbin ZHENG +2 位作者 Lingling HU Nan SUN Minghui FU 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1753-1770,共18页
The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with kn... The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with known deformation modes. Second,the existing EIM is only applicable to Euler beams, and there is no EIM available for higher-precision Timoshenko and Reissner beams in cases where both force and moment are applied at the end. This paper proposes a general EIM for Reissner beams under arbitrary boundary conditions. On this basis, an analytical equation for determining the sign of the elliptic integral is provided. Based on the equation, we discover a class of elliptic integral piecewise points that are distinct from inflection points. More importantly, we propose an algorithm that automatically calculates the number of inflection points and other piecewise points during the nonlinear solution process, which is crucial for beams with unknown or changing deformation modes. 展开更多
关键词 elastic beam elliptic integral deformation mode transition equilibrium path high-precision algorithm
在线阅读 下载PDF
Factors Affecting Resin Mineral Composites'Effective Elastic Modulus
19
作者 LONG Yunfang ZHANG Jianhua +1 位作者 NIU Shuo GU Weizhou 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1488-1498,共11页
We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these material... We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward. 展开更多
关键词 resin mineral composites homogenization methods hybrid inclusion modeling elastic modulus MICROMECHANICS
原文传递
Study of the elastic scattering effects of a slowing-down model on D–T neutron porosity logging
20
作者 Shao-Heng Zhou Ying-Long Tao +6 位作者 Bo Chang Li-Juan Hao Jie-Qiong Jiang Ya-Zhou Li Fang Wang Quan Gan FDS Consortium 《Nuclear Science and Techniques》 2025年第5期206-215,共10页
The application of a controllable neutron source for measuring formation porosity in the advancement of nuclear logging has garnered increased attention.The existing porosity algorithm,which is based on the thermal ne... The application of a controllable neutron source for measuring formation porosity in the advancement of nuclear logging has garnered increased attention.The existing porosity algorithm,which is based on the thermal neutron counting ratio,exhibits lower sensitivity in high-porosity regions.To enhance the sensitivity,the effects of elastic and inelastic scattering,which influence the slowing-down of fast neutrons,were theoretically analyzed,and a slowing-down model of fast neutrons was created.Based on this model,a density correction porosity algorithm was proposed based on the relationship between density,thermal neutron counting ratio,and porosity.Finally,the super multifunctional calculation program for nuclear design and safety evaluation(TopMC/SuperMC)was used to create a simulation model for porosity logging,and its applicability was examined.The results demonstrated that the relative error between the calculated and actual porosities was less than 1%,and the influence of deviation in the density measurement was less than 2%.Therefore,the proposed density correction algorithm based on the slowing-down model of fast neutrons can effectively improve the sensitivity in the high-porosity region.This study is expected to serve as a reference for the application of neutron porosity measurements with D–T neutron sources. 展开更多
关键词 D–T neutron source Slowing-down model elastic scattering Neutron porosity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部