In this paper,we will use Geometric Algebra to be able to embed the Klein-Gordon equation for a particle in a non-Euclidean field(gravitational field).This way,we will obtain an expression similar to the Dirac equatio...In this paper,we will use Geometric Algebra to be able to embed the Klein-Gordon equation for a particle in a non-Euclidean field(gravitational field).This way,we will obtain an expression similar to the Dirac equation,but with a slight change in one of the terms.This variation is produced and depends on the curvature of the space where the particle lies in(the Ricci scalar).In a similar manner,we will find variations in the equation for the energy of a particle and in the Einstein gravitational equation that will depend again on the value of the Ricci scalar(the curvature of the space where the particle lies in).An important outcome will be an equation that limits the value of the Ricci scalar depending on the value of the mass that provokes it(the value of the mass,not the mass density),highly reducing the possibilities of arriving at singularities.In fact,the value of this R has been found to be equal to the cosmological constant(both in the order of 1E-52),making it a perfect candidate for the dark energy.Also,the magnetic-like effects of gravitation coming from the equations are sufficient to explain the rotation of the galaxies(NGC 1560,NGC 3198 and NGC 3115)without the need for dark matter.展开更多
It is well known that the Einstein tensor G for a Riemannian manifold defined by Gα^β = 1/2α^β ,Rα^β=g^α^β γ where Rγα and R are respectively the Ricci tensor and the scalar curvature of the manifold, p...It is well known that the Einstein tensor G for a Riemannian manifold defined by Gα^β = 1/2α^β ,Rα^β=g^α^β γ where Rγα and R are respectively the Ricci tensor and the scalar curvature of the manifold, plays an important part in Einstein s theory of gravitation as well as in proving some theorems in Riemannian geometry. In this work, we first obtain the generalized Einstein tensor for a Weyl manifold. Then, after studying some properties of generalized Einstein tensor, we prove that the conformal invariance of the generalized Einstein tensor implies the conformal invariance of the curvature tensor of the Weyl manifold and conversely. Moreover, we show that such Weyl manifolds admit a one-parameter family of hypersurfaces the orthogonal trajectories of which are geodesics. Finally, a necessary and sufficient condition in order that the generalized circles of a Weyl manifold be preserved by a conformal mapping is stated in terms of generalized Einstein tensors at corresponding points.展开更多
It was noted earlier that the general relativity field equations for static systems with spherical symmetry can be put into a linear form when the source energy density equals radial stress. These linear equations lea...It was noted earlier that the general relativity field equations for static systems with spherical symmetry can be put into a linear form when the source energy density equals radial stress. These linear equations lead to a delta function energymomentum tensor for a point mass source for the Schwarzschild field that has vanishing self-stress, and whose integral therefore transforms properly under a Lorentz transformation, as though the particle is in the flat space-time of special relativity (SR). These findings were later extended to n spatial dimensions. Consistent with this SR-like result for the source tensor, Nordstrom and independently, Schrodinger, found for three spatial dimensions that the Einstein gravitational energy-momentum pseudo-tensor vanished in proper quasi-rectangular coordinates. The present work shows that this vanishing holds for the pseudo-tensor when extended to n spatial dimensions. Two additional consequences of this work are: 1) the dependency of the Einstein gravitational coupling constant κ on spatial dimensionality employed earlier is further justified;2) the Tolman expression for the mass of a static, isolated system is generalized to take into account the dimensionality of space for n ≥ 3.展开更多
Tensor flight dynamics solves flight dynamics problems using Cartesian tensors, which are invariant under coordinate transformations, rather than Gibbs’ vectors, which change under time-varying transformations. Three...Tensor flight dynamics solves flight dynamics problems using Cartesian tensors, which are invariant under coordinate transformations, rather than Gibbs’ vectors, which change under time-varying transformations. Three tensors of rank two play a prominent role and are the subject of this paper: moment of inertia, rotation, and angular velocity tensor. A new theorem is proven governing the shift of reference frames, which is used to derive the angular velocity tensor from the rotation tensor. As applications, the general strap-down INS equations are derived, and the effect of the time-rate-of-change of the moment of inertia tensor on missile dynamics is investigated.展开更多
In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amaz...In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amazing theoretical results. To the order of C<sup>-2</sup>, two of these exact solutions are reduced to the approximate solutions from the method of successive approximations.展开更多
In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that ...In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that we can calculate the components of the Ricci tensor, Ricci scalar, and Einstein Field Equation directly in an easy way without the need to use general relativity theory hypotheses, principles, and symbols. Formulating the general relativity theory through another theory will make it easier to understand this relativity theory and will help combining it with electromagnetic theory and quantum mechanics easily.展开更多
In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric...In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature.展开更多
Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 k...Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.展开更多
The purpose of this paper is to revisit the well known potentials, also called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2-d...The purpose of this paper is to revisit the well known potentials, also called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2-dimensional elasticity, then by E. Beltrami (1892), J.C. Maxwell (1870) for 3-dimensional elasticity, finally by A. Einstein (1915) for 4-dimensional elasticity, both with a variational procedure introduced by C. Lanczos (1949, 1962) in order to relate potentials to Lagrange multipliers. Using the methods of Algebraic Analysis, namely mixing differential geometry with homological algebra and combining the double duality test involved with the Spencer cohomology, we shall be able to extend these results to an arbitrary situation with an arbitrary dimension n. We shall also explain why double duality is perfectly adapted to variational calculus with differential constraints as a way to eliminate the corresponding Lagrange multipliers. For example, the canonical parametrization of the stress equations is just described by the formal adjoint of the components of the linearized Riemann tensor considered as a linear second order differential operator but the minimum number of potentials needed is equal to for any minimal parametrization, the Einstein parametrization being “in between” with potentials. We provide all the above results without even using indices for writing down explicit formulas in the way it is done in any textbook today, but it could be strictly impossible to obtain them without using the above methods. We also revisit the possibility (Maxwell equations of electromagnetism) or the impossibility (Einstein equations of gravitation) to obtain canonical or minimal parametrizations for various equations of physics. It is nevertheless important to notice that, when n and the algorithms presented are known, most of the calculations can be achieved by using computers for the corresponding symbolic computations. Finally, though the paper is mathematically oriented as it aims providing new insights towards the mathematical foundations of general relativity, it is written in a rather self-contained way.展开更多
In this paper some properties of a symmetric tensor field T(X,Y) = g(A(X), Y) on a Riemannian manifold (M, g) without boundary which satisfies the S quasi-Einstein equation Rij-S/2gij=Tij+bξiξj are given. ...In this paper some properties of a symmetric tensor field T(X,Y) = g(A(X), Y) on a Riemannian manifold (M, g) without boundary which satisfies the S quasi-Einstein equation Rij-S/2gij=Tij+bξiξj are given. The necessary and sufficient conditions for this tensor to satisfy the quasi-Einstein equation are also obtained.展开更多
本文研究了迷向表示分为12个不可约子空间的满旗流形SO(8)/T上不变爱因斯坦度量的问题.利用计算机计算满旗流形SO(8)/T爱因斯坦方程组的方法,得到了满旗流形SO(8)/T上有160个不变爱因斯坦度量(up to a scale)的结果,在等距情况下考虑这...本文研究了迷向表示分为12个不可约子空间的满旗流形SO(8)/T上不变爱因斯坦度量的问题.利用计算机计算满旗流形SO(8)/T爱因斯坦方程组的方法,得到了满旗流形SO(8)/T上有160个不变爱因斯坦度量(up to a scale)的结果,在等距情况下考虑这160个不变爱因斯坦度量,其中1个是凯莱爱因斯坦度量,4个是非凯莱爱因斯坦度量.推广了只对迷向表示分为小于等于6个不可约子空间的满旗流形上不变爱因斯坦度量的研究.展开更多
文摘In this paper,we will use Geometric Algebra to be able to embed the Klein-Gordon equation for a particle in a non-Euclidean field(gravitational field).This way,we will obtain an expression similar to the Dirac equation,but with a slight change in one of the terms.This variation is produced and depends on the curvature of the space where the particle lies in(the Ricci scalar).In a similar manner,we will find variations in the equation for the energy of a particle and in the Einstein gravitational equation that will depend again on the value of the Ricci scalar(the curvature of the space where the particle lies in).An important outcome will be an equation that limits the value of the Ricci scalar depending on the value of the mass that provokes it(the value of the mass,not the mass density),highly reducing the possibilities of arriving at singularities.In fact,the value of this R has been found to be equal to the cosmological constant(both in the order of 1E-52),making it a perfect candidate for the dark energy.Also,the magnetic-like effects of gravitation coming from the equations are sufficient to explain the rotation of the galaxies(NGC 1560,NGC 3198 and NGC 3115)without the need for dark matter.
文摘It is well known that the Einstein tensor G for a Riemannian manifold defined by Gα^β = 1/2α^β ,Rα^β=g^α^β γ where Rγα and R are respectively the Ricci tensor and the scalar curvature of the manifold, plays an important part in Einstein s theory of gravitation as well as in proving some theorems in Riemannian geometry. In this work, we first obtain the generalized Einstein tensor for a Weyl manifold. Then, after studying some properties of generalized Einstein tensor, we prove that the conformal invariance of the generalized Einstein tensor implies the conformal invariance of the curvature tensor of the Weyl manifold and conversely. Moreover, we show that such Weyl manifolds admit a one-parameter family of hypersurfaces the orthogonal trajectories of which are geodesics. Finally, a necessary and sufficient condition in order that the generalized circles of a Weyl manifold be preserved by a conformal mapping is stated in terms of generalized Einstein tensors at corresponding points.
文摘It was noted earlier that the general relativity field equations for static systems with spherical symmetry can be put into a linear form when the source energy density equals radial stress. These linear equations lead to a delta function energymomentum tensor for a point mass source for the Schwarzschild field that has vanishing self-stress, and whose integral therefore transforms properly under a Lorentz transformation, as though the particle is in the flat space-time of special relativity (SR). These findings were later extended to n spatial dimensions. Consistent with this SR-like result for the source tensor, Nordstrom and independently, Schrodinger, found for three spatial dimensions that the Einstein gravitational energy-momentum pseudo-tensor vanished in proper quasi-rectangular coordinates. The present work shows that this vanishing holds for the pseudo-tensor when extended to n spatial dimensions. Two additional consequences of this work are: 1) the dependency of the Einstein gravitational coupling constant κ on spatial dimensionality employed earlier is further justified;2) the Tolman expression for the mass of a static, isolated system is generalized to take into account the dimensionality of space for n ≥ 3.
文摘Tensor flight dynamics solves flight dynamics problems using Cartesian tensors, which are invariant under coordinate transformations, rather than Gibbs’ vectors, which change under time-varying transformations. Three tensors of rank two play a prominent role and are the subject of this paper: moment of inertia, rotation, and angular velocity tensor. A new theorem is proven governing the shift of reference frames, which is used to derive the angular velocity tensor from the rotation tensor. As applications, the general strap-down INS equations are derived, and the effect of the time-rate-of-change of the moment of inertia tensor on missile dynamics is investigated.
文摘In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amazing theoretical results. To the order of C<sup>-2</sup>, two of these exact solutions are reduced to the approximate solutions from the method of successive approximations.
文摘In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that we can calculate the components of the Ricci tensor, Ricci scalar, and Einstein Field Equation directly in an easy way without the need to use general relativity theory hypotheses, principles, and symbols. Formulating the general relativity theory through another theory will make it easier to understand this relativity theory and will help combining it with electromagnetic theory and quantum mechanics easily.
文摘In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature.
文摘Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.
文摘The purpose of this paper is to revisit the well known potentials, also called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2-dimensional elasticity, then by E. Beltrami (1892), J.C. Maxwell (1870) for 3-dimensional elasticity, finally by A. Einstein (1915) for 4-dimensional elasticity, both with a variational procedure introduced by C. Lanczos (1949, 1962) in order to relate potentials to Lagrange multipliers. Using the methods of Algebraic Analysis, namely mixing differential geometry with homological algebra and combining the double duality test involved with the Spencer cohomology, we shall be able to extend these results to an arbitrary situation with an arbitrary dimension n. We shall also explain why double duality is perfectly adapted to variational calculus with differential constraints as a way to eliminate the corresponding Lagrange multipliers. For example, the canonical parametrization of the stress equations is just described by the formal adjoint of the components of the linearized Riemann tensor considered as a linear second order differential operator but the minimum number of potentials needed is equal to for any minimal parametrization, the Einstein parametrization being “in between” with potentials. We provide all the above results without even using indices for writing down explicit formulas in the way it is done in any textbook today, but it could be strictly impossible to obtain them without using the above methods. We also revisit the possibility (Maxwell equations of electromagnetism) or the impossibility (Einstein equations of gravitation) to obtain canonical or minimal parametrizations for various equations of physics. It is nevertheless important to notice that, when n and the algorithms presented are known, most of the calculations can be achieved by using computers for the corresponding symbolic computations. Finally, though the paper is mathematically oriented as it aims providing new insights towards the mathematical foundations of general relativity, it is written in a rather self-contained way.
基金The Grant-in-Aid for Scientific Research from Nanjing University of ScienceTechnology (AB41409) the NNSF (19771048) of China partly.
文摘In this paper some properties of a symmetric tensor field T(X,Y) = g(A(X), Y) on a Riemannian manifold (M, g) without boundary which satisfies the S quasi-Einstein equation Rij-S/2gij=Tij+bξiξj are given. The necessary and sufficient conditions for this tensor to satisfy the quasi-Einstein equation are also obtained.
基金Partially supported by Scientific Research Fund of Sichuan University of Science and Engineering(No.2012PY17)Scientific Research Fund of Sichuan Provincial Education Department(No.14ZB0173)Artificial Intelligence Key Laboratory of Sichuan Province(No.2014RYJ05)
基金Supported by the NNSF of China(11171235)Scientific Research Fund of Sichuan University of Science and Engineering Grant(2012PY17,2012KY06)Artificial Intelligence Key Laboratory of Sichuan Province(2014RYJ05)
基金Supported by Sichuan University of Science and Engineering grant(2012PY17)Sichuan Province University Key Laboratory of Bridge Non-Destruction Detecting and Engineering Computing grant(2014QZJ03)Partially Supported by Scientific Research Fund of Sichuan Province Education Department Grant(15SB0122)
文摘本文研究了迷向表示分为12个不可约子空间的满旗流形SO(8)/T上不变爱因斯坦度量的问题.利用计算机计算满旗流形SO(8)/T爱因斯坦方程组的方法,得到了满旗流形SO(8)/T上有160个不变爱因斯坦度量(up to a scale)的结果,在等距情况下考虑这160个不变爱因斯坦度量,其中1个是凯莱爱因斯坦度量,4个是非凯莱爱因斯坦度量.推广了只对迷向表示分为小于等于6个不可约子空间的满旗流形上不变爱因斯坦度量的研究.