Awell-anticipated wide-field X-ray focusing imager,the Einstein Probe(EP,also named“Tianguan”in Chinese)has caught the eye of astronomers since its launch in January 2024.Initiated and sponsored by the Chinese Acade...Awell-anticipated wide-field X-ray focusing imager,the Einstein Probe(EP,also named“Tianguan”in Chinese)has caught the eye of astronomers since its launch in January 2024.Initiated and sponsored by the Chinese Academy of Sciences(CAS),and developed in cooperation with the European Space Agency(ESA).展开更多
动床阻力研究是河流动力学中的重要课题,在回顾河流动床阻力研究现状的基础上,剖析了Einstein H A(以下简称Einstein)河流动床阻力公式存在的问题;一是原经验曲线未涵盖高能态区范围;二是试算的黄河沙粒水力半径约30%大于实测水深,导致...动床阻力研究是河流动力学中的重要课题,在回顾河流动床阻力研究现状的基础上,剖析了Einstein H A(以下简称Einstein)河流动床阻力公式存在的问题;一是原经验曲线未涵盖高能态区范围;二是试算的黄河沙粒水力半径约30%大于实测水深,导致按水力半径分割定义式求出的沙波水力半径为负值的物理悖论。通过黄河实测数据补充点群范围,外延曲线且拟合出关系式。利用实测资料计算分析Einstein动床阻力公式适用性,表明国外河流沙波水力半径未出现负值且水力参数大于0.3时适用,适当修正初步适用于黄河下游。引入张红武河床纵向稳定指标关系式求河床比降替代实测水面比降,在降低沙波水力半径负值率的前提下提高了公式验证精度,表明Einstein河流动床阻力公式经过修正后,适用于黄河下游相关计算。展开更多
In this paper,we define the spectral Einstein functional associated with the Dirac operator for manifolds with boundary.And we give the proof of Kastler-Kalau-Walze type theorem for the spectral Einstein functional as...In this paper,we define the spectral Einstein functional associated with the Dirac operator for manifolds with boundary.And we give the proof of Kastler-Kalau-Walze type theorem for the spectral Einstein functional associated with the Dirac operator on 4-dimensional manifolds with boundary.展开更多
In this paper,we study scalar curvature rigidity of non-smooth metrics on smooth manifolds with non-positive Yamabe invariant.We prove that if the scalar curvature is not less than the Yamabe invariant in the distribu...In this paper,we study scalar curvature rigidity of non-smooth metrics on smooth manifolds with non-positive Yamabe invariant.We prove that if the scalar curvature is not less than the Yamabe invariant in the distributional sense,then the manifold must be isometric to an Einstein manifold.This result extends Theorem 1.4 in Jiang,Sheng and Zhang[27],from a special case where the manifolds have zero Yamabe invariant to general cases where the manifolds have non-positive Yamabe invariant.展开更多
A team of researchers from the Beijing Normal University,the Institute of High Energy Physics(IHEP)under the Chinese Academy of Sciences(CAS),and the National Astronomical Observatories,CAS(NAOC),reported in Nature As...A team of researchers from the Beijing Normal University,the Institute of High Energy Physics(IHEP)under the Chinese Academy of Sciences(CAS),and the National Astronomical Observatories,CAS(NAOC),reported in Nature Astronomy on January 23,2025 their discovery of an X-ray flash about 12.5 billion lightyears away.The signals burst out only 1.2 billion years after the Big Bang,when our 13.8-billion-year-old universe was still in its infancy,and a science satellite swiftly recorded them.展开更多
The Stokes–Einstein–Debye(SED) relation in TIP5P water is tested with the original formula and its variants within the temperature range 240–390 K. The results indicate that although the variants explicitly break d...The Stokes–Einstein–Debye(SED) relation in TIP5P water is tested with the original formula and its variants within the temperature range 240–390 K. The results indicate that although the variants explicitly break down, the original SED relation is almost valid. Compared with the Stokes–Einstein relation, no explicit decoupling is observed in translational and rotational motion. Variation of the effective hydrodynamic radius is critical to testing the validity of the SED relation.展开更多
We propose a theoretical framework,based on the two-component Gross-Pitaevskii equation(GPE),for the investigation of vortex solitons(VSs)in hybrid atomic-molecular Bose-Einstein condensates under the action of the st...We propose a theoretical framework,based on the two-component Gross-Pitaevskii equation(GPE),for the investigation of vortex solitons(VSs)in hybrid atomic-molecular Bose-Einstein condensates under the action of the stimulated Raman-induced photoassociation and square-optical-lattice potential.Stationary solutions of the coupled GPE system are obtained by means of the imaginary-time integration,while the temporal dynamics are simulated using the fourth-order Runge-Kutta algorithm.The analysis reveals stable rhombus-shaped VS shapes with topological charges m=1 and 2 of the atomic component.The stability domains and spatial structure of these VSs are governed by three key parameters:the parametric-coupling strength(χ),atomicmolecular interaction strength(g_(12)),and the optical-lattice potential depth(V_(0)).By varyingχand g_(12),we demonstrate a structural transition where four-core rhombus-shaped VSs evolve into eight-core square-shaped modes,highlighting the nontrivial nonlinear dynamics of the system.This work establishes a connection between interactions of cold atoms and topologically structured matter waves in hybrid quantum systems.展开更多
This work focuses on the evolution behaviors of ring dark solitons(RDSs) and the following vortices after the collapses of RDSs in spin-1 Bose–Einstein condensates. We find that the weighted average of the initial de...This work focuses on the evolution behaviors of ring dark solitons(RDSs) and the following vortices after the collapses of RDSs in spin-1 Bose–Einstein condensates. We find that the weighted average of the initial depths of three components determines the number and motion trajectories of vortex dipoles. For the weighted average of the initial depths below the critical depth, two vortex dipoles form and start moving along the horizontal axis.For the weighted average depth above the critical depth, two or four vortex dipoles form, and all start moving along the vertical axis. For the RDS with weighted average depth at exactly the critical point, four vortex dipoles form, half of the vortex dipoles initiate movement vertically, and the other half initiate movement horizontally.Our conclusion is applicable to the two-component system studied in earlier research, indicating its universality.展开更多
Based on the Gross–Pitaevskii equation,we theoretically investigate exciton Bose–Einstein condensation(BEC)in transition metal dichalcogenide monolayers(TMDC-MLs)under in-plane magnetic fields.We observe that the in...Based on the Gross–Pitaevskii equation,we theoretically investigate exciton Bose–Einstein condensation(BEC)in transition metal dichalcogenide monolayers(TMDC-MLs)under in-plane magnetic fields.We observe that the in-plane magnetic fields exert a strong influence on the exciton BEC wave functions in TMDC-MLs because of the mixing of the bright and dark exciton states via Zeeman effect.This leads to the brightening of the dark exciton BEC states.The competition between the dipole–dipole interactions caused by the long-range Coulomb interaction and the Zeeman effect induced by the in-plane magnetic fields can effectively regulate dark exciton BEC states.Our findings emphasize the utility of TMD-MLs as platforms for investigating collective phenomenon involving excited states.展开更多
Research of Maxwell demon and quantum entanglement is important because of its foundational significance in physics and its potential applications in quantum information. Previous studies on the Maxwell demon have pri...Research of Maxwell demon and quantum entanglement is important because of its foundational significance in physics and its potential applications in quantum information. Previous studies on the Maxwell demon have primarily focused on thermodynamics, taking into account quantum correlations. Here we consider from another perspective and ask whether quantum non-locality correlations can be simulated by performing work. The Maxwell demon-assisted Einstein–Podolsky–Rosen(EPR) steering is thus proposed, which implies a new type of loophole. The application of Landauer's erasure principle suggests that the only way to close this loophole during a steering task is by continuously monitoring the heat fluctuation of the local environment by the participant.We construct a quantum circuit model of Maxwell demon-assisted EPR steering, which can be demonstrated by current programmable quantum processors, such as superconducting quantum computers. Based on this quantum circuit model, we obtain a quantitative formula describing the relationship between energy dissipation due to the work of the demon and quantum non-locality correlation. The result is of great physical interest because it provides a new way to explore and understand the relationship between quantum non-locality, information, and thermodynamics.展开更多
We present a novel approach for generating stable three-dimensional(3D)spatiotemporal solitons(SSs)within a rotating Bose–Einstein condensate,incorporating spin–orbit coupling(SOC),a weakly anharmonic potential and ...We present a novel approach for generating stable three-dimensional(3D)spatiotemporal solitons(SSs)within a rotating Bose–Einstein condensate,incorporating spin–orbit coupling(SOC),a weakly anharmonic potential and cold Rydberg atoms.This intricate system facilitates the emergence of quasi-stable 3D SSs with topological charges|m|≤3 in two spinor components,potentially exhibiting diverse spatial configurations.Our findings reveal that the Rydberg long-range interaction,spin–orbit coupling,and rotational angular frequency exert significant influence on the domains of existence and stability of these solitons.Notably,the Rydberg interaction contributes to a reduction in the norm of topological solitons,while the SOC plays a key role in stabilizing the SSs with finite topological charges.This research of SSs exhibits potential applications in precision measurement,quantum information processing,and other advanced technologies.展开更多
We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle.By adjusting the loss rate of cavities,we map out the phas...We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle.By adjusting the loss rate of cavities,we map out the phase diagram of steady states within a mean field framework.It is found that when the loss rates of the two cavities are different,superradiant transitions may not occur at the same time in the two cavities.A first-order phase transition is observed between the states with only one cavity in superradiance and both in superradiance.In the case that both cavities are superradiant,a net photon current is observed flowing from the cavity with small decay rate to the one with large decay rate.The photon current shows a non-monotonic dependence on the loss rate difference,owing to the competition of photon number difference and cavity field phase difference.Our findings can be realized and detected in experiments.展开更多
Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency referenc...Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.展开更多
The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the K...The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.展开更多
Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used ...Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.展开更多
The Lorentz transformations are the mathematical basis of Einstein’s theory of special relativity. We conduct a thorough examination of the method of derivation of the Lorentz transformations used by Einstein and ide...The Lorentz transformations are the mathematical basis of Einstein’s theory of special relativity. We conduct a thorough examination of the method of derivation of the Lorentz transformations used by Einstein and identify the cause of the incorrect implementation of the method. The cause is related to the incorrect proof of the equality φ(v)=1for the unknown function φ(v)arising in the process of derivation of the Lorentz transformations. We develop proof of the equality φ(v)=1and eliminate the cause of the incorrect implementation of the method of derivation of the Lorentz transformations used by Einstein.展开更多
文摘Awell-anticipated wide-field X-ray focusing imager,the Einstein Probe(EP,also named“Tianguan”in Chinese)has caught the eye of astronomers since its launch in January 2024.Initiated and sponsored by the Chinese Academy of Sciences(CAS),and developed in cooperation with the European Space Agency(ESA).
文摘动床阻力研究是河流动力学中的重要课题,在回顾河流动床阻力研究现状的基础上,剖析了Einstein H A(以下简称Einstein)河流动床阻力公式存在的问题;一是原经验曲线未涵盖高能态区范围;二是试算的黄河沙粒水力半径约30%大于实测水深,导致按水力半径分割定义式求出的沙波水力半径为负值的物理悖论。通过黄河实测数据补充点群范围,外延曲线且拟合出关系式。利用实测资料计算分析Einstein动床阻力公式适用性,表明国外河流沙波水力半径未出现负值且水力参数大于0.3时适用,适当修正初步适用于黄河下游。引入张红武河床纵向稳定指标关系式求河床比降替代实测水面比降,在降低沙波水力半径负值率的前提下提高了公式验证精度,表明Einstein河流动床阻力公式经过修正后,适用于黄河下游相关计算。
文摘In this paper,we define the spectral Einstein functional associated with the Dirac operator for manifolds with boundary.And we give the proof of Kastler-Kalau-Walze type theorem for the spectral Einstein functional associated with the Dirac operator on 4-dimensional manifolds with boundary.
基金Supported by the National Key Research and Development Program of China(2022YFA1005501)the Natural Science Foundation of Jiangsu Province(BK20241433).
文摘In this paper,we study scalar curvature rigidity of non-smooth metrics on smooth manifolds with non-positive Yamabe invariant.We prove that if the scalar curvature is not less than the Yamabe invariant in the distributional sense,then the manifold must be isometric to an Einstein manifold.This result extends Theorem 1.4 in Jiang,Sheng and Zhang[27],from a special case where the manifolds have zero Yamabe invariant to general cases where the manifolds have non-positive Yamabe invariant.
文摘A team of researchers from the Beijing Normal University,the Institute of High Energy Physics(IHEP)under the Chinese Academy of Sciences(CAS),and the National Astronomical Observatories,CAS(NAOC),reported in Nature Astronomy on January 23,2025 their discovery of an X-ray flash about 12.5 billion lightyears away.The signals burst out only 1.2 billion years after the Big Bang,when our 13.8-billion-year-old universe was still in its infancy,and a science satellite swiftly recorded them.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12104502)the Natural Science Foundation of Sichuan Province (Grant No. 2023YFG0308)the Fundamental Research Funds for the Central Universities (Grant No. 24CAFUC03057)。
文摘The Stokes–Einstein–Debye(SED) relation in TIP5P water is tested with the original formula and its variants within the temperature range 240–390 K. The results indicate that although the variants explicitly break down, the original SED relation is almost valid. Compared with the Stokes–Einstein relation, no explicit decoupling is observed in translational and rotational motion. Variation of the effective hydrodynamic radius is critical to testing the validity of the SED relation.
基金supported by the National Natural Science Foundation of China(Grant No.62275075)the Natural Science Foundation of Hubei Soliton Research Association(Grant No.2025HBSRA09)+1 种基金joint supported by Hubei Provincial Natural Science Foundation and Xianning of China(Grant Nos.2025AFD401 and 2025AFD405)Israel Science Foundation(Grant No.1695/22).
文摘We propose a theoretical framework,based on the two-component Gross-Pitaevskii equation(GPE),for the investigation of vortex solitons(VSs)in hybrid atomic-molecular Bose-Einstein condensates under the action of the stimulated Raman-induced photoassociation and square-optical-lattice potential.Stationary solutions of the coupled GPE system are obtained by means of the imaginary-time integration,while the temporal dynamics are simulated using the fourth-order Runge-Kutta algorithm.The analysis reveals stable rhombus-shaped VS shapes with topological charges m=1 and 2 of the atomic component.The stability domains and spatial structure of these VSs are governed by three key parameters:the parametric-coupling strength(χ),atomicmolecular interaction strength(g_(12)),and the optical-lattice potential depth(V_(0)).By varyingχand g_(12),we demonstrate a structural transition where four-core rhombus-shaped VSs evolve into eight-core square-shaped modes,highlighting the nontrivial nonlinear dynamics of the system.This work establishes a connection between interactions of cold atoms and topologically structured matter waves in hybrid quantum systems.
基金supported by the National Natural Science Foundation of China (Grant Nos.12261131495,11975172,and 12381240286)。
文摘This work focuses on the evolution behaviors of ring dark solitons(RDSs) and the following vortices after the collapses of RDSs in spin-1 Bose–Einstein condensates. We find that the weighted average of the initial depths of three components determines the number and motion trajectories of vortex dipoles. For the weighted average of the initial depths below the critical depth, two vortex dipoles form and start moving along the horizontal axis.For the weighted average depth above the critical depth, two or four vortex dipoles form, and all start moving along the vertical axis. For the RDS with weighted average depth at exactly the critical point, four vortex dipoles form, half of the vortex dipoles initiate movement vertically, and the other half initiate movement horizontally.Our conclusion is applicable to the two-component system studied in earlier research, indicating its universality.
基金supported by the National Natural Science Foundation of China(Grant Nos.92265203 and 11974340)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB0460000,XDB28000000,and XDPB22)+1 种基金the Chinese Academy of Sciences(Grant No.QYZDJSSW-SYS001)the National Key R&D Program of China(Grant No.2018YFA0306101).
文摘Based on the Gross–Pitaevskii equation,we theoretically investigate exciton Bose–Einstein condensation(BEC)in transition metal dichalcogenide monolayers(TMDC-MLs)under in-plane magnetic fields.We observe that the in-plane magnetic fields exert a strong influence on the exciton BEC wave functions in TMDC-MLs because of the mixing of the bright and dark exciton states via Zeeman effect.This leads to the brightening of the dark exciton BEC states.The competition between the dipole–dipole interactions caused by the long-range Coulomb interaction and the Zeeman effect induced by the in-plane magnetic fields can effectively regulate dark exciton BEC states.Our findings emphasize the utility of TMD-MLs as platforms for investigating collective phenomenon involving excited states.
基金the support from the Natural Science Foundation of China (Grant No. 92365206)the support from the Fundamental Research Funds for the Central Universitiessupported by the National Natural Science Foundation of China (Grant No. 92065113)。
文摘Research of Maxwell demon and quantum entanglement is important because of its foundational significance in physics and its potential applications in quantum information. Previous studies on the Maxwell demon have primarily focused on thermodynamics, taking into account quantum correlations. Here we consider from another perspective and ask whether quantum non-locality correlations can be simulated by performing work. The Maxwell demon-assisted Einstein–Podolsky–Rosen(EPR) steering is thus proposed, which implies a new type of loophole. The application of Landauer's erasure principle suggests that the only way to close this loophole during a steering task is by continuously monitoring the heat fluctuation of the local environment by the participant.We construct a quantum circuit model of Maxwell demon-assisted EPR steering, which can be demonstrated by current programmable quantum processors, such as superconducting quantum computers. Based on this quantum circuit model, we obtain a quantitative formula describing the relationship between energy dissipation due to the work of the demon and quantum non-locality correlation. The result is of great physical interest because it provides a new way to explore and understand the relationship between quantum non-locality, information, and thermodynamics.
基金supported by the National Natural Science Foundation of China(Grant Nos.62275075 and 11975172)the Sci-ence and Technology Research Program of Education De-partment of Hubei Province(Grant No.B2022188)+1 种基金the Natural Science Foundation of Hubei Province(Grant No.2023AFC042)the Training Program of Innova-tion and Entrepreneurship for Undergraduates of Hubei Province(Grant No.S202210927003).
文摘We present a novel approach for generating stable three-dimensional(3D)spatiotemporal solitons(SSs)within a rotating Bose–Einstein condensate,incorporating spin–orbit coupling(SOC),a weakly anharmonic potential and cold Rydberg atoms.This intricate system facilitates the emergence of quasi-stable 3D SSs with topological charges|m|≤3 in two spinor components,potentially exhibiting diverse spatial configurations.Our findings reveal that the Rydberg long-range interaction,spin–orbit coupling,and rotational angular frequency exert significant influence on the domains of existence and stability of these solitons.Notably,the Rydberg interaction contributes to a reduction in the norm of topological solitons,while the SOC plays a key role in stabilizing the SSs with finite topological charges.This research of SSs exhibits potential applications in precision measurement,quantum information processing,and other advanced technologies.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1405300)the National Natural Science Foundation of China(Grant Nos.11734010,12074428,12174358,and 92265208)NSAF(Grant No.U2330401)。
文摘We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle.By adjusting the loss rate of cavities,we map out the phase diagram of steady states within a mean field framework.It is found that when the loss rates of the two cavities are different,superradiant transitions may not occur at the same time in the two cavities.A first-order phase transition is observed between the states with only one cavity in superradiance and both in superradiance.In the case that both cavities are superradiant,a net photon current is observed flowing from the cavity with small decay rate to the one with large decay rate.The photon current shows a non-monotonic dependence on the loss rate difference,owing to the competition of photon number difference and cavity field phase difference.Our findings can be realized and detected in experiments.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1402100)。
文摘Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022 and 12147213)。
文摘The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.
文摘Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.
文摘The Lorentz transformations are the mathematical basis of Einstein’s theory of special relativity. We conduct a thorough examination of the method of derivation of the Lorentz transformations used by Einstein and identify the cause of the incorrect implementation of the method. The cause is related to the incorrect proof of the equality φ(v)=1for the unknown function φ(v)arising in the process of derivation of the Lorentz transformations. We develop proof of the equality φ(v)=1and eliminate the cause of the incorrect implementation of the method of derivation of the Lorentz transformations used by Einstein.