期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Approximation Theorem for the First Eigenpair of Single Birth Processes
1
作者 Yueshuang LI Lingdi WANG 《Journal of Mathematical Research with Applications》 CSCD 2024年第6期825-836,共12页
The explicit solution to the Poisson equation corresponding to the Q-matrix of a single birth process is obtained,thus the explicit inverse(if exists)is presented directly.As an application,inspired by the inverse pow... The explicit solution to the Poisson equation corresponding to the Q-matrix of a single birth process is obtained,thus the explicit inverse(if exists)is presented directly.As an application,inspired by the inverse power method,combining the explicit inverse with CollatzWielandt formula,a powerful approximation theorem for the maximal eigenpair corresponding to the Q-matrix of a single birth process is presented.Different from the classical acceleration method using some fixed shift in the iteration,the shift in each iteration step is varying and the sequence formed by these shifts is strictly monotone and increases to the eigenvalue needed,which effectively reduces the number of iterations.Some examples are studied to illustrate the power of these results. 展开更多
关键词 single birth processes minimal eigenpair accelerated inverse power method
原文传递
Left and Right Inverse Eigenpairs Problem of Orthogonal Matrices
2
作者 Fanliang Li 《Applied Mathematics》 2012年第12期1972-1976,共5页
In this paper, the left and right inverse eigenpairs problem of orthogonal matrices and its optimal approximation solution are considered. Based on the special properties of eigenvalue and the special relations of lef... In this paper, the left and right inverse eigenpairs problem of orthogonal matrices and its optimal approximation solution are considered. Based on the special properties of eigenvalue and the special relations of left and right eigenpairs for orthogonal matrices, we find the equivalent problem, and derive the necessary and sufficient conditions for the solvability of the problem and its general solutions. With the properties of continuous function in bounded closed set, the optimal approximate solution is obtained. In addition, an algorithm to obtain the optimal approximation and numerical example are provided. 展开更多
关键词 LEFT and RIGHT eigenpairs ORTHOGONAL MATRICES Optimal APPROXIMATION
在线阅读 下载PDF
On Finding the Smallest Generalized Eigenpair Using Markov Chain Monte Carlo Algorithm
3
作者 Farshid Mehrdoust 《Applied Mathematics》 2012年第6期594-596,共3页
This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method... This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method is efficient. 展开更多
关键词 MONTE Carlo Method MARKOV CHAIN GENERALIZED eigenpair INVERSE MONTE Carlo ALGORITHM
在线阅读 下载PDF
Finding the Maximal Eigenpair for a Large, Dense, Symmetric Matrix based on Mufa Chen's Algorithm
4
作者 Tao Tang Jiang Yang 《Communications in Mathematical Research》 CSCD 2020年第1期93-112,共20页
A hybrid method is presented for determining maximal eigenvalue and its eigenvector(called eigenpair)of a large,dense,symmetric matrix.Many problems require finding only a small part of the eigenpairs,and some require... A hybrid method is presented for determining maximal eigenvalue and its eigenvector(called eigenpair)of a large,dense,symmetric matrix.Many problems require finding only a small part of the eigenpairs,and some require only the maximal one.In a series of papers,efficient algorithms have been developed by Mufa Chen for computing the maximal eigenpairs of tridiagonal matrices with positive off-diagonal elements.The key idea is to explicitly construet effective initial guess of the maximal eigenpair and then to employ a self-closed iterative algorithm.In this paper we will extend Mufa Chen's algorithm to find maximal eigenpair for a large scale,dense,symmetric matrix.Our strategy is to first convert the underlying matrix into the tridiagonal form by using similarity transformations.We then handle the cases that prevent us from applying Chen's algorithm directly,e.g.,the cases with zero or negative super-or sub-diagonal elements.Serval numerical experiments are carried out to demonstrate the efficiency of the proposed hybrid method. 展开更多
关键词 MAXIMAL eigenpair symmetric MATRIX DENSE MATRIX TRIDIAGONAL MATRIX Householder transformation complexity ITERATION
在线阅读 下载PDF
Second-order sensitivity of eigenpairs in multiple parameter structures
5
作者 陈塑寰 郭睿 孟广伟 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第12期1475-1487,共13页
This paper presents methods for computing a second-order sensitivity matrix and the Hessian matrix of eigenvalues and eigenvectors of multiple parameter structures. Second-order perturbations of eigenvalues and eigenv... This paper presents methods for computing a second-order sensitivity matrix and the Hessian matrix of eigenvalues and eigenvectors of multiple parameter structures. Second-order perturbations of eigenvalues and eigenvectors are transformed into multiple parameter forms,and the second-order perturbation sensitivity matrices of eigenvalues and eigenvectors are developed.With these formulations,the efficient methods based on the second-order Taylor expansion and second-order perturbation are obtained to estimate changes of eigenvalues and eigenvectors when the design parameters are changed. The presented method avoids direct differential operation,and thus reduces difficulty for computing the second-order sensitivity matrices of eigenpairs.A numerical example is given to demonstrate application and accuracy of the proposed method. 展开更多
关键词 multiple parameter structures second-order sensitivity of eigenpairs efficient computational method
在线阅读 下载PDF
Global algorithms for maximal eigenpair 被引量:8
6
作者 Mu-Fa CHEN 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第5期1023-1043,共21页
This paper is a continuation of our previous work [Front. Math. China, 2016, 11(6): 1379-1418] where an efficient algorithm for computing the maximal eigenpalr was introduced first for tridiagonal matrices and then... This paper is a continuation of our previous work [Front. Math. China, 2016, 11(6): 1379-1418] where an efficient algorithm for computing the maximal eigenpalr was introduced first for tridiagonal matrices and then extended to the irreducible matrices with nonnegative off-diagonal elements. This paper introduces mainly two global algorithms for computing the maximal eigenpair in a rather general setup, including even a class of real (with some negative off-diagonal elements) or complex matrices. 展开更多
关键词 Maximal eigenpair shifted inverse iteration global algorithm
原文传递
Development of powerful algorithm for maximal eigenpair 被引量:6
7
作者 Mu-Fa CHEN Yue-Shuang LI 《Frontiers of Mathematics in China》 SCIE CSCD 2019年第3期493-519,共27页
Based on a series of recent papers, a powerful algorithm is reformulated for computing the maximal eigenpair of self-adjoint complex tridiagonal matrices. In parallel, the same problem in a particular case for computi... Based on a series of recent papers, a powerful algorithm is reformulated for computing the maximal eigenpair of self-adjoint complex tridiagonal matrices. In parallel, the same problem in a particular case for computing the sub-maximal eigenpair is also introduced. The key ideas for each critical improvement are explained. To illustrate the present algorithm and compare it with the related algorithms, more than 10 examples are included. 展开更多
关键词 POWERFUL ALGORITHM MAXIMAL eigenpair sub-maximal eigenpair Hermitizable TRIDIAGONAL MATRIX
原文传递
Improved global algorithms for maximal eigenpair 被引量:5
8
作者 Mu-Fa CHEN Yue-Shuang 《Frontiers of Mathematics in China》 SCIE CSCD 2019年第6期1077-1116,共40页
This paper is a continuation of our previous paper[Front.Math.China,2017,12(5):10231043]where global algorithms for computing the maximal cigcnpair were introduced in a rather general setup.The efficiency of the globa... This paper is a continuation of our previous paper[Front.Math.China,2017,12(5):10231043]where global algorithms for computing the maximal cigcnpair were introduced in a rather general setup.The efficiency of the global algorithms is improved in this paper in terms of a good use of power iteration and two quasi-symmetric techniques.Finally,the new algorithms are applied to Hua’s economic optimization model. 展开更多
关键词 Maximal eigenpair global algorithm power iteration shifted inverse iteration quasi-symmetrization
原文传递
Computing top eigenpairs of Hermitizable matrix 被引量:2
9
作者 Mu-Fa CHEN Zhi-Gang JIA Hong-Kui PANG 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第2期345-379,共35页
The top eigenpairs at the title mean the maximal, the submaximal, or a few of the subsequent eigenpairs of an Hermitizable matrix. Restricting on top ones is to handle with the matrices having large scale, for which o... The top eigenpairs at the title mean the maximal, the submaximal, or a few of the subsequent eigenpairs of an Hermitizable matrix. Restricting on top ones is to handle with the matrices having large scale, for which only little is known up to now. This is different from some mature algorithms, that are clearly limited only to medium-sized matrix for calculating full spectrum. It is hoped that a combination of this paper with the earlier works, to be seen soon, may provide some effective algorithms for computing the spectrum in practice, especially for matrix mechanics. 展开更多
关键词 Hermitizable Householder transformation birth-death matrix isospectral matrices top eigenpairs ALGORITHM
原文传递
Efficient algorithm for principal eigenpair of discrete p-Laplacian
10
作者 Mu-Fa CHEN 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第3期509-524,共16页
This paper is a continuation of the author's previous papers [Front. Math. China, 2016, 11(6): 1379-1418; 2017, 12(5): 1023-1043], where the linear case was studied. A shifted inverse iteration algorithm is int... This paper is a continuation of the author's previous papers [Front. Math. China, 2016, 11(6): 1379-1418; 2017, 12(5): 1023-1043], where the linear case was studied. A shifted inverse iteration algorithm is introduced, as an acceleration of the inverse iteration which is often used in the non-linear context (the p-Laplacian operators for instance). Even though the algorithm is formally similar to the Rayleigh quotient iteration which is well-known in the linear situation, but they are essentially different. The point is that the standard Rayleigh quotient cannot be used as a shift in the non-linear setup. We have to employ a different quantity which has been obtained only recently. As a surprised gift, the explicit formulas for the algorithm restricted to the linear case (p = 2) is obtained, which improves the author's approximating procedure for the leading eigenvalues in different context, appeared in a group of publications. The paper begins with p-Laplacian, and is closed by the non-linear operators corresponding to the well-known Hardy-type inequalities. 展开更多
关键词 Discrete p-Laplacian principal eigenpair shifted inverse iteration approximating procedure
原文传递
Linear homotopy method for computing generalized tensor eigenpairs
11
作者 Liping CHEN Lixing HAN Liangmin ZHOU 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第6期1303-1317,共15页
Let m, m', n be positive integers such that m ≠ m'. Let A be an ruth order n-dimensional tensor, and let B be an m'th order n-dimensional tensor. ), ∈ C is called a B-eigenvalue of A if Ax^m-1 = λBx^m'-1 and B... Let m, m', n be positive integers such that m ≠ m'. Let A be an ruth order n-dimensional tensor, and let B be an m'th order n-dimensional tensor. ), ∈ C is called a B-eigenvalue of A if Ax^m-1 = λBx^m'-1 and Bx^m' = 1 for some x ∈ Cn/{0}. In this paper, we propose a linear homotopy method for solving this eigenproblem. We prove that the method finds all isolated B- eigenpairs. Moreover, it is easy to implement. Numerical results are provided to show the efficiency of the proposed method. 展开更多
关键词 TENSORS generalized eigenpairs polynomial systems linear homotopy
原文传递
BLOCK ALGORITHMS WITH AUGMENTED RAYLEIGH-RITZ PROJECTIONS FOR LARGE-SCALE EIGENPAIR COMPUTATION
12
作者 Haoyang Liu Zaiwen Wen +1 位作者 Chao Yang Yin Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2019年第6期889-915,共27页
Most iterative algorithms for eigenpair computation consist of two main steps:a subspace update(SU)step that generates bases for approximate eigenspaces,followed by a Rayleigh-Ritz(RR)projection step that extracts app... Most iterative algorithms for eigenpair computation consist of two main steps:a subspace update(SU)step that generates bases for approximate eigenspaces,followed by a Rayleigh-Ritz(RR)projection step that extracts approximate eigenpairs.So far the predominant methodology for the SU step is based on Krylov subspaces that builds orthonormal bases piece by piece in a sequential manner.In this work,we investigate block methods in the SU step that allow a higher level of concurrency than what is reachable by Krylov subspace methods.To achieve a competitive speed,we propose an augmented Rayleigh-Ritz(ARR)procedure.Combining this ARR procedure with a set of polynomial accelerators,as well as utilizing a few other techniques such as continuation and deflation,we construet a block algorithm designed to reduce the number of RR steps and elevate concurrency in the SU steps.Extensive computational experiments are conducted in C on a representative set of test problems to evaluate the performance of two variants of our algorithm.Numerical results,obtained on a many-core computer without explicit code parallelization,show that when computing a relatively large number of eigenpairs,the performance of our algorithms is competitive with that of several state-of-the-art eigensolvers. 展开更多
关键词 EXTREME eigenpairs AUGMENTED Rayleigh-Ritz PROJECTION
原文传递
对称张量秩-1近似逆迭代算法
13
作者 朱文凤 盛洲 《淮北师范大学学报(自然科学版)》 2025年第1期16-20,共5页
为得到对称张量秩-1近似分解,提出一个平移逆迭代算法。算法每步迭代子问题转化为计算一个线性方程组,选取适当平移参数保证线性方程组系数矩阵非奇异性,建立逆迭代算法全局收敛性。数值实验表明,算法在运行时间和迭代次数等方面具有较... 为得到对称张量秩-1近似分解,提出一个平移逆迭代算法。算法每步迭代子问题转化为计算一个线性方程组,选取适当平移参数保证线性方程组系数矩阵非奇异性,建立逆迭代算法全局收敛性。数值实验表明,算法在运行时间和迭代次数等方面具有较强竞争力。 展开更多
关键词 对称张量 秩-1近似 逆迭代 Z-特征对
在线阅读 下载PDF
Maximal number of distinct H-eigenpairs for a two-dimensional real tensor
14
作者 Kelly J. PEARSON Tan ZHANG 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第1期85-105,共21页
Based on the generalized characteristic polynomial introduced by J. Canny in Generalized characteristic polynomials [J. Symbolic Comput., 1990, 9(3): 241-250], it is immediate that for any m-order n-dimensional rea... Based on the generalized characteristic polynomial introduced by J. Canny in Generalized characteristic polynomials [J. Symbolic Comput., 1990, 9(3): 241-250], it is immediate that for any m-order n-dimensional real tensor, the number of distinct H-eigenvalues is less than or equal to n(m-1)n-1. However, there is no known bounds on the maximal number of distinct H- eigenvectors in general. We prove that for any m ~〉 2, an m-order 2-dimensional tensor sd exists such that d has 2(m - 1) distinct H-eigenpairs. We give examples of 4-order 2-dimensional tensors with six distinct H-eigenvalues as well as six distinct H-eigenvectors. We demonstrate the structure of eigenpairs for a higher order tensor is far more complicated than that of a matrix. Further- more, we introduce a new class of weakly symmetric tensors, called p-symmetric tensors, and show under certain conditions, p-symmetry will effectively reduce the maximal number of distinct H-eigenveetors for a given two-dimensional tensor. Lastly, we provide a complete classification of the H-eigenvectors of a given 4-order 2-dimensional nonnegative p-symmetric tensor. Additionally, we give sufficient conditions which prevent a given 4-order 2-dimensional nonnegative irreducible weakly symmetric tensor from possessing six pairwise distinct H-eigenveetors. 展开更多
关键词 Symmetric tensor H-eigenpairs
原文传递
基于免逆牛顿法的对称张量Z-特征对可信验证 被引量:1
15
作者 桑海风 李敏 +2 位作者 刘畔畔 王春艳 栾天 《吉林大学学报(理学版)》 CAS 北大核心 2020年第1期90-94,共5页
利用免逆牛顿法及区间算法理论,研究对称张量Z-特征对的可信验证问题,提出了一种计算Z-特征对的区间算法.该算法通过输出一个近似Z-特征对及其相应的误差界,使得在近似解的误差范围内必存在一个精确的Z-特征对.
关键词 对称张量 特征对 可信性验证 牛顿法
在线阅读 下载PDF
非对称阻尼系统特征对一阶导数与二阶导数的计算 被引量:3
16
作者 解惠青 戴华 《高校应用数学学报(A辑)》 CSCD 北大核心 2006年第4期465-476,共12页
提出了一种计算非对称阻尼系统特征对一阶、二阶导数的方法.该方法利用阻尼系统的特征向量计算特征对的导数,避免了状态空间中特征向量的使用,节省了计算量,且不要求系统所有特征值的互异性.最后以两个非对称阻尼系统进行数值试验,数值... 提出了一种计算非对称阻尼系统特征对一阶、二阶导数的方法.该方法利用阻尼系统的特征向量计算特征对的导数,避免了状态空间中特征向量的使用,节省了计算量,且不要求系统所有特征值的互异性.最后以两个非对称阻尼系统进行数值试验,数值结果表明提出的方法是有效的. 展开更多
关键词 特征对导数 灵敏度分析 阻尼系统 非对称系统
在线阅读 下载PDF
工程结构特征值问题的加速解法 被引量:2
17
作者 孙丽萍 李力波 《船舶工程》 CSCD 北大核心 2002年第3期30-32,共3页
求解大型结构动态响应的特征模态时 ,用传统的特征值解法很难完成 ,因此有必要寻求一种加速解法。本文给出了求解大型结构特征值问题的加速子空间迭代法 ,它采用Gram Schmidt正交化过程消除收敛的特征向量 ,使得计算时间大大减少。文中... 求解大型结构动态响应的特征模态时 ,用传统的特征值解法很难完成 ,因此有必要寻求一种加速解法。本文给出了求解大型结构特征值问题的加速子空间迭代法 ,它采用Gram Schmidt正交化过程消除收敛的特征向量 ,使得计算时间大大减少。文中通过实例对此法进行了验证。 展开更多
关键词 工程结构 特征值 加速解法 里茨基向量 子空间迭代法
在线阅读 下载PDF
多参数结构特征二阶灵敏度 被引量:1
18
作者 陈塑寰 郭睿 孟广伟 《应用数学和力学》 CSCD 北大核心 2009年第12期1387-1398,共12页
提出了一种有效计算多参数结构特征值与特征向量二阶灵敏度矩阵——Hessian矩阵的方法.将特征值和特征向量二阶摄动法转变为多参数形式,推导出二阶摄动灵敏度矩阵,由此得到特征值和特征向量的二阶估计式.该法解决了无法用直接求导法计... 提出了一种有效计算多参数结构特征值与特征向量二阶灵敏度矩阵——Hessian矩阵的方法.将特征值和特征向量二阶摄动法转变为多参数形式,推导出二阶摄动灵敏度矩阵,由此得到特征值和特征向量的二阶估计式.该法解决了无法用直接求导法计算特征值和特征向量二阶灵敏度矩阵的问题.数值算例说明了该算法的应用和计算精度. 展开更多
关键词 多参数结构 二阶特征灵敏度 有效计算方法
在线阅读 下载PDF
对称箭形矩阵最大最小特征对的逆特征值问题的一个有效算法 被引量:3
19
作者 吴跃明 高鸿 张复兴 《计算技术与自动化》 2009年第2期73-76,共4页
研究一个对称箭形矩阵的逆特征值问题:给定非零向量x∈Rn,y∈Rk,k≤n,以及两个实数λ>μ,求对称箭形矩阵A,使得(,λx)是对称箭形矩阵A的最大特征对,而(μ,y)是A的k阶顺序主子阵Ak的最小特征对。给出该问题有解的充分必要条件,并且给... 研究一个对称箭形矩阵的逆特征值问题:给定非零向量x∈Rn,y∈Rk,k≤n,以及两个实数λ>μ,求对称箭形矩阵A,使得(,λx)是对称箭形矩阵A的最大特征对,而(μ,y)是A的k阶顺序主子阵Ak的最小特征对。给出该问题有解的充分必要条件,并且给出一个算法计算该问题的一个解,数值实例说明是可行的。 展开更多
关键词 对称箭形矩阵 逆特征值问题 最大(小)特征对 自动控制论
在线阅读 下载PDF
R对称矩阵左右逆特征值问题的有解条件 被引量:1
20
作者 杜玉霞 梁武 《佳木斯大学学报(自然科学版)》 CAS 2011年第2期285-286,289,共3页
研究了R对称矩阵的左右逆特征值问题,得到可解条件及一般解的表达式.本文的结论推广了李范良的文章:反中心对称矩阵的左右逆特征值问题.
关键词 R对称矩阵 左右特征值对 有解条件
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部