期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
MODIFIED LAPLACIAN EIGENMAP ETHOD FOR FAULT DIAGNOSIS 被引量:9
1
作者 JIANG Quansheng JIA Minping +1 位作者 HU Jianzhong XU Feiyun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第3期90-93,共4页
A novel method based on the improved Laplacian eigenmap algorithm for fault pattern classification is proposed. Via modifying the Laplacian eigenmap algorithm to replace Euclidean distance with kernel-based geometric ... A novel method based on the improved Laplacian eigenmap algorithm for fault pattern classification is proposed. Via modifying the Laplacian eigenmap algorithm to replace Euclidean distance with kernel-based geometric distance in the neighbor graph construction, the method can preserve the consistency of local neighbor information and effectively extract the low-dimensional manifold features embedded in the high-dimensional nonlinear data sets. A nonlinear dimensionality reduction algorithm based on the improved Laplacian eigenmap is to directly learn high-dimensional fault signals and extract the intrinsic manifold features from them. The method greatly preserves the global geometry structure information embedded in the signals, and obviously improves the classification performance of fault pattern recognition. The experimental results on both simulation and engineering indicate the feasibility and effectiveness of the new method. 展开更多
关键词 Laplacian eigenmap Kernel trick Fault diagnosis Manifold learning
在线阅读 下载PDF
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP 被引量:1
2
作者 Chen Jiangfeng Yuan Baozong Pei Bingnan 《Journal of Electronics(China)》 2008年第5期616-621,共6页
Recently, some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaees method considered the manifold structures of the face images, it has limits to solve face ... Recently, some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaees method considered the manifold structures of the face images, it has limits to solve face recognition problem. This paper proposes a new feature extraction method, Two Dimensional Laplacian EigenMap (2DLEM), which especially considers the manifold structures of the face images, and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces, 2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance, a series of ex- periments are performed on the ORL database and the Yale database. Moreover, several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance. 展开更多
关键词 (2DLEM) Face recognition MANIFOLD Laplacianfaces Two Dimensional Laplacian eigenmap
在线阅读 下载PDF
A Note on Laplacian Eigenmaps
3
作者 潘荣英 张晓东 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第5期632-634,共3页
In this note,we show that the image of Laplcian eigenmap in 2-dimensional Edclidean space is lied in a parabola.
关键词 GRAPH Laplacian eigenmap EIGENVECTORS
原文传递
基于Laplacian Eigenmap的图像变化检测虚警优化技术
4
作者 吴华 常艳玲 沙瑞 《计算机工程与应用》 CSCD 北大核心 2007年第32期196-200,共5页
对点目标的图像变化检测,现有的变化检测技术结果往往存在着虚警过大的问题。通过深入分析多个传统的变化检测方法的特点,利用各方法的互补性,提出了利用Laplacian Eigenmap对多个方法检测结果进行降维分类的优化技术。首先把各个方法... 对点目标的图像变化检测,现有的变化检测技术结果往往存在着虚警过大的问题。通过深入分析多个传统的变化检测方法的特点,利用各方法的互补性,提出了利用Laplacian Eigenmap对多个方法检测结果进行降维分类的优化技术。首先把各个方法对某个像素的检测结果用向量的形式进行表示,然后利用Laplacian Eigenmap对整个图像的数据流形在低维空间展开,最后利用模糊分类进行分类。该技术有两个优势:(1)在保证现有较高检测率的同时,大大降低了结果的虚警率;(2)它极大地降低了在传统方法中由于人为阈值取舍带来的偏差风险。但该技术的不足之处是增加了计算量。 展开更多
关键词 图像变化检测 虚警优化 Laplacian特征映射 降维
在线阅读 下载PDF
Multi-Source Data with Laplacian Eigenmaps and Denoising Autoencoder for Predicting Microbe-Disease Associations via Convolutional Neural Network
5
作者 Xiu-Juan Lei Ya-Li Chen Yi Pan 《Journal of Computer Science & Technology》 2025年第2期588-604,共17页
1 School of Computer Science,Shaanxi Normal University,Xi’an 710119,China 2 Faculty of Computer Science and Control Engineering,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,Ch... 1 School of Computer Science,Shaanxi Normal University,Xi’an 710119,China 2 Faculty of Computer Science and Control Engineering,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China 3 Shenzhen Key Laboratory of Intelligent Bioinformatics,Shenzhen Institute of Advanced Technology,Chinese Academy of Science,Shenzhen 518055,China E-mail:xjlei@snnu.edu.cn;yalichen@snnu.edu.cn;yi.pan@siat.ac.cn Received December 9,2022;accepted July 29,2024.Abstract Identifying microbes associated with diseases is important for understanding the pathogenesis of diseases as well as for the diagnosis and treatment of diseases.In this article,we propose a method based on a multi-source association network to predict microbe-disease associations,named MMHN-MDA.First,a heterogeneous network of multimolecule associations is constructed based on associations between microbes,diseases,drugs,and metabolites.Second,the graph embedding algorithm Laplacian eigenmaps is applied to the association network to learn the behavior features of microbe nodes and disease nodes.At the same time,the denoising autoencoder(DAE)is used to learn the attribute features of microbe nodes and disease nodes.Finally,attribute features and behavior features are combined to get the final embedding features of microbes and diseases,which are fed into the convolutional neural network(CNN)to predict the microbedisease associations.Experimental results show that the proposed method is more effective than existing methods.In addition,case studies on bipolar disorder and schizophrenia demonstrate good predictive performance of the MMHN-MDA model,and further,the results suggest that gut microbes may influence host gene expression or compounds in the nervous system,such as neurotransmitters,or metabolites that alter the blood-brain barrier. 展开更多
关键词 multi-source data Laplacian eigenmap denoising autoencoder convolutional neural network microbe-disease association
原文传递
基于AGEFS的矿井提升机摇臂轴承故障诊断
6
作者 裴志强 《电气传动》 2025年第11期90-96,共7页
针对传统矿井提升机摇臂轴承故障诊断技术通常只利用振动数据集的某种特定几何结构,无法获得最优的相似图结构,提出一种基于自适应图嵌入的轴承故障智能诊断方法。首先利用拉普拉斯特征映射和稀疏自表示挖掘轴承数据的局部和全局几何结... 针对传统矿井提升机摇臂轴承故障诊断技术通常只利用振动数据集的某种特定几何结构,无法获得最优的相似图结构,提出一种基于自适应图嵌入的轴承故障智能诊断方法。首先利用拉普拉斯特征映射和稀疏自表示挖掘轴承数据的局部和全局几何结构;然后将两种结构信息进行系数融合,并引入具有行稀疏性的ι2,1-正则化约束,选择能准确表征轴承运行状态的本质特征;最后将选择出的本质特征输入至支持向量机中进行训练和测试,构建轴承故障智能诊断模型。为验证方法有效性,采用凯斯西储大学轴承数据和研发部提供的QPZZ-Ⅱ传动系统平台模拟矿井提升机摇臂传动系统工况得到轴承监测数据。仿真实验结果表明所提出的智能诊断模型可以获得最优的故障诊断精度,平均精度可达97.5%。 展开更多
关键词 摇臂轴承 故障诊断 特征选择 拉普拉斯特征映射 稀疏自表示 支持向量机
在线阅读 下载PDF
一种基于非线性流形学习的故障特征提取模型 被引量:15
7
作者 蒋全胜 李华荣 黄鹏 《振动与冲击》 EI CSCD 北大核心 2012年第23期132-136,共5页
流形学习作为一种挖掘高维非线性数据内在几何分布特征的有效方法,可用于故障信号的特征提取。针对机械故障诊断中的非线性、故障征兆复杂的诊断问题,提出一种基于非线性流形学习的故障特征提取模型。该模型针对采集样本的不同处理情形... 流形学习作为一种挖掘高维非线性数据内在几何分布特征的有效方法,可用于故障信号的特征提取。针对机械故障诊断中的非线性、故障征兆复杂的诊断问题,提出一种基于非线性流形学习的故障特征提取模型。该模型针对采集样本的不同处理情形,分别运用Laplacian Eigenmaps算法及其增量、监督算法,进行故障样本的特征提取与分类,由于采用非线性的维数约简方式,极大地保留了故障信号中的整体几何结构信息,增强了故障模式识别的分类性能。最后通过工程实例应用,表明了所提特征提取模型的可行性和有效性。 展开更多
关键词 非线性流形学习 特征提取 故障诊断 LAPLACIAN eigenmaps算法
在线阅读 下载PDF
局部规则嵌入 被引量:1
8
作者 谭璐 吴翊 《计算机应用》 CSCD 北大核心 2005年第4期817-819,共3页
引入了拓扑结构和规则拓扑结构的概念,为了寻求具有规则拓扑结构的低维数据集,构 造了拓扑结构规则性的度量,提出了保持数据集拓扑结构的局部规则嵌入方法。与LocallyLinear Embedding,LaplacianEigenmap等核特征映射方法相比,低维... 引入了拓扑结构和规则拓扑结构的概念,为了寻求具有规则拓扑结构的低维数据集,构 造了拓扑结构规则性的度量,提出了保持数据集拓扑结构的局部规则嵌入方法。与LocallyLinear Embedding,LaplacianEigenmap等核特征映射方法相比,低维嵌入结果是近似规则的,与数据分类有 着更加自然的联系。最后的实例表明,与LLE和LaplacianEigenmap方法相比,该方法能更好地保持 数据集的类特性,揭示数据集的本征结构。 展开更多
关键词 拓扑结构 规则拓扑结构 LAPLACIAN eigenmap
在线阅读 下载PDF
保持拓扑结构的低维嵌入
9
作者 刘红霞 谭璐 吴翊 《计算机应用与软件》 CSCD 北大核心 2007年第7期47-49,共3页
引入了拓扑邻域、拓扑结构和规则拓扑结构的概念。对拓扑邻域进行了理论分析,说明其是自适应的,随着维数的不断升高,趋于平凡拓扑邻域。为了寻求具有规则拓扑结构的低维数据集,构造了数据结构规则性的度量,提出了保持数据集拓扑结构不... 引入了拓扑邻域、拓扑结构和规则拓扑结构的概念。对拓扑邻域进行了理论分析,说明其是自适应的,随着维数的不断升高,趋于平凡拓扑邻域。为了寻求具有规则拓扑结构的低维数据集,构造了数据结构规则性的度量,提出了保持数据集拓扑结构不变的降维方法。该方法是节省参数的,降维结果是近似规则的。结果表明,它能更好的揭示数据集的结构。 展开更多
关键词 拓扑邻域 拓扑结构 规则的 LAPLACIAN eigenmap
在线阅读 下载PDF
几种流形学习算法的比较研究 被引量:4
10
作者 李小丽 薛清福 《电脑与信息技术》 2009年第3期14-18,共5页
如何发现高维数据空间流形中有意义的低维嵌入信息是流形学习的主要目的。目前,大部分流形学习算法都是用于非线性维数约简或是数据可视化的,如等距映射(Isomap),局部线性嵌入算法(LLE),拉普拉斯特征映射算法(laplacian Eigenmap)等等,... 如何发现高维数据空间流形中有意义的低维嵌入信息是流形学习的主要目的。目前,大部分流形学习算法都是用于非线性维数约简或是数据可视化的,如等距映射(Isomap),局部线性嵌入算法(LLE),拉普拉斯特征映射算法(laplacian Eigenmap)等等,文章对这三种流形学习算法进行实验分析与比较,目的在于了解这几种流形学习算法的特点,以便更好地进行数据的降维与分析。 展开更多
关键词 ISOMAP LLE LAPLACIAN eigenmap
在线阅读 下载PDF
基于小波包和拉普拉斯特征值映射的柱塞泵健康评估方法 被引量:21
11
作者 王浩任 黄亦翔 +3 位作者 赵帅 刘成良 王双园 张大庆 《振动与冲击》 EI CSCD 北大核心 2017年第22期45-50,共6页
柱塞泵是液压系统的关键部件之一,监测其健康状态对液压系统的可靠运行具有重要意义。提出一种基于小波包和流形学习的方法,用于分析柱塞泵出口振动信号,从而对其进行健康评估;该方法利用小波包对原始信号进行分解,从中提取用于描述柱... 柱塞泵是液压系统的关键部件之一,监测其健康状态对液压系统的可靠运行具有重要意义。提出一种基于小波包和流形学习的方法,用于分析柱塞泵出口振动信号,从而对其进行健康评估;该方法利用小波包对原始信号进行分解,从中提取用于描述柱塞泵健康状态的有效特征群;把提取的高维特征群作为输入,利用并比较多种流形学习方法进行特征降维,选取状态识别准确率最高的拉普拉斯特征映射方法,建立起的特征向量到健康状态之间的对应关系,实现液压泵健康状态监测的分类要求。实验结果表明,采用小波包和拉普拉斯特征映射相结合的方法可以有效提高柱塞泵状态评估的准确性。 展开更多
关键词 小波包分析 流形学习 柱塞泵 拉普拉斯特征映射 健康状态评估
在线阅读 下载PDF
基于拉普拉斯特征映射的故障模式识别方法 被引量:34
12
作者 蒋全胜 贾民平 +1 位作者 胡建中 许飞云 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5710-5713,共4页
拉普拉斯特征映射算法能有效提取高维非线性数据中嵌入的低维流形特征。将其引入到设备故障诊断领域,应用于故障模式识别问题,提出了一种基于拉普拉斯特征映射的故障模式识别新方法。运用基于拉普拉斯特征映射的非线性降维算法直接对原... 拉普拉斯特征映射算法能有效提取高维非线性数据中嵌入的低维流形特征。将其引入到设备故障诊断领域,应用于故障模式识别问题,提出了一种基于拉普拉斯特征映射的故障模式识别新方法。运用基于拉普拉斯特征映射的非线性降维算法直接对原始故障信号进行学习,提取出数据内在的流形特征,极大地保留了信号中内含的整体几何结构信息,有效克服了常规模式识别方法仅能获得局部线性结构的不足,明显改善了故障模式识别的分类性能。仿真和工程实例结果表明了所提方法的可行性和有效性。 展开更多
关键词 拉普拉斯特征映射 模式识别 流形学习 故障诊断
原文传递
基于拉普拉斯特征映射的启发式Q学习 被引量:8
13
作者 朱美强 李明 +2 位作者 程玉虎 张倩 王雪松 《控制与决策》 EI CSCD 北大核心 2014年第3期425-430,共6页
在基于目标的强化学习任务中,欧氏距离常作为启发式函数用于策略选择,其用于状态空间在欧氏空间内不连续的任务效果不理想.针对此问题,引入流形学习中计算复杂度较低的拉普拉斯特征映射法,提出一种基于谱图理论的启发式策略选择方法.所... 在基于目标的强化学习任务中,欧氏距离常作为启发式函数用于策略选择,其用于状态空间在欧氏空间内不连续的任务效果不理想.针对此问题,引入流形学习中计算复杂度较低的拉普拉斯特征映射法,提出一种基于谱图理论的启发式策略选择方法.所提出的方法适用于状态空间在某个内在维数易于估计的流形上连续,且相邻状态间的连接关系为无向图的任务.格子世界的仿真结果验证了所提出方法的有效性. 展开更多
关键词 强化学习 启发式策略选择 Q学习 拉普拉斯特征映射
原文传递
基于测地线距离的广义高斯型Laplacian特征映射 被引量:9
14
作者 曾宪华 罗四维 +1 位作者 王娇 赵嘉莉 《软件学报》 EI CSCD 北大核心 2009年第4期815-824,共10页
传统的Laplacian特征映射是基于欧氏距离的近邻数据点的保持,近邻的高维数据点映射到内在低维空间后仍为近邻点,高维数据点的近邻选取最终将影响全局低维坐标.将测地线距离和广义高斯函数融合到传统的Laplacian特征映射算法中,首先提出... 传统的Laplacian特征映射是基于欧氏距离的近邻数据点的保持,近邻的高维数据点映射到内在低维空间后仍为近邻点,高维数据点的近邻选取最终将影响全局低维坐标.将测地线距离和广义高斯函数融合到传统的Laplacian特征映射算法中,首先提出了一种基于测地线距离的广义高斯型Laplacian特征映射算法(geodesic distance-based generalized Gaussian LE,简称GGLE),该算法在用不同的广义高斯函数度量高维数据点间的相似度时,获得的全局低维坐标呈现出不同的聚类特性;然后,利用这种特性进一步提出了它的集成判别算法,该集成判别算法的主要优点是:近邻参数K固定,邻接图和测地线距离矩阵都只构造一次.在木纹数据集上的识别实验结果表明,这是一种有效的基于流形的集成判别算法. 展开更多
关键词 流形学习 Laplacian特征映射 广义高斯函数 测地线距离 集成
在线阅读 下载PDF
基于拉普拉斯特征马氏距离的滚珠丝杠健康评估 被引量:11
15
作者 赵帅 黄亦翔 +3 位作者 王浩任 刘成良 刘晓 梁鑫光 《机械工程学报》 EI CAS CSCD 北大核心 2017年第15期125-130,共6页
滚珠丝杠的性能是影响数控机床加工精度的重要因素之一。提出一种机床滚珠丝杠的性能衰退及健康状态的评估方法,该方法结合拉普拉斯特征降维与马氏距离分析模型,建立不同健康状态下传感器信号样本点在特征空间中与健康值的非线性映射关... 滚珠丝杠的性能是影响数控机床加工精度的重要因素之一。提出一种机床滚珠丝杠的性能衰退及健康状态的评估方法,该方法结合拉普拉斯特征降维与马氏距离分析模型,建立不同健康状态下传感器信号样本点在特征空间中与健康值的非线性映射关系,从而得到滚珠丝杠性能衰退程度的量化评估。通过不同健康状态的滚珠丝杠性能试验,将该方法应用于滚珠丝杠的驱动电动机速度和转矩信号,通过对传感器信号的内蕴流形及其不同健康状态下的采样特征点在内蕴特征空间中分布相关性分析,以得到量化的性能评估结果。与常见方法所得结果相比,该模型能准确地反映滚珠丝杠的性能衰退趋势,鲁棒性更好。该方法可采用数控机床自带的传感器,无须改动机床整体结构,不影响其动态加工性能,可广泛应用于工业数控机床滚珠丝杠的在线实时健康状态评估。 展开更多
关键词 滚珠丝杠 性能衰退 健康评估 拉普拉斯特征值映射 马氏距离
在线阅读 下载PDF
基于谱图理论的流形学习算法 被引量:76
16
作者 罗四维 赵连伟 《计算机研究与发展》 EI CSCD 北大核心 2006年第7期1173-1179,共7页
流形学习的主要目标是发现嵌入在高维数据空间的低维光滑流形.近年来基于谱图理论的学习算法受到研究者的广泛关注.介绍了流形与流形学习的关系,着重研究了几种有代表性的基于谱图理论的流形学习算法,并对算法进行了比较分析,最后进行... 流形学习的主要目标是发现嵌入在高维数据空间的低维光滑流形.近年来基于谱图理论的学习算法受到研究者的广泛关注.介绍了流形与流形学习的关系,着重研究了几种有代表性的基于谱图理论的流形学习算法,并对算法进行了比较分析,最后进行总结和对进一步的研究做了展望. 展开更多
关键词 流形学习 谱图理论 局部切空间 随机游走 特征映射
在线阅读 下载PDF
新的流形学习方法统一框架及改进的拉普拉斯特征映射方法 被引量:15
17
作者 侯臣平 吴翊 易东云 《计算机研究与发展》 EI CSCD 北大核心 2009年第4期676-682,共7页
流形学习是多个领域的重要研究课题.通过考察各种流形学习方法,提出了一种新的流形学习方法的统一框架,并在此框架下对拉普拉斯特征映射方法(Laplacian eigenmap,LE)进行了分析.进一步,基于此框架,提出了一种改进拉普拉斯特征映射方法(i... 流形学习是多个领域的重要研究课题.通过考察各种流形学习方法,提出了一种新的流形学习方法的统一框架,并在此框架下对拉普拉斯特征映射方法(Laplacian eigenmap,LE)进行了分析.进一步,基于此框架,提出了一种改进拉普拉斯特征映射方法(improved Laplacian eigenmap,ILE).它建立在LE方法和最大差异延展算法(maximum variance unfolding,MVU)的基础上,在保持流形谱图拉普拉斯特征的同时,以最大化任意两点之间的差异为目标.ILE有效地解决了拉普拉斯特征映射方法对邻域选择敏感以及MVU方法大计算量、局部限制过强等问题,且能够保持数据聚类性质,挖掘数据内蕴特征.通过实验说明了ILE的有效性. 展开更多
关键词 维数约简 流形学习 统一框架 拉普拉斯特征映射方法 最大差异延展算法
在线阅读 下载PDF
基于WAMS和改进拉普拉斯特征映射的同调机群在线识别 被引量:19
18
作者 宋洪磊 吴俊勇 +1 位作者 郝亮亮 冀鲁豫 《电网技术》 EI CSCD 北大核心 2013年第8期2157-2164,共8页
当系统发生严重级联故障导致失步运行时,需要快速准确地识别出系统中的同调机群,为下一步的自主解列控制提供基础。针对WAMS测量到的发电机动态轨迹信息往往具有非线性和非平稳性等特点,提出了一种在线识别同调机群的新方法,能充分考虑... 当系统发生严重级联故障导致失步运行时,需要快速准确地识别出系统中的同调机群,为下一步的自主解列控制提供基础。针对WAMS测量到的发电机动态轨迹信息往往具有非线性和非平稳性等特点,提出了一种在线识别同调机群的新方法,能充分考虑各种故障场景的动态特性和非线性系统的时变特征。首先根据WAMS量测可得到故障后发电机组的实时响应功角轨迹信息,利用基于类别信息和核空间的改进拉普拉斯特征映射算法提取特征信息,进而识别出各发电机的运行特性;再利用k-way余弦相似度因子分群算法对发电机组进行自主识别分群。最后通过新英格兰39节点系统仿真,验证了所提方法的有效性,并且适用于系统不同运行方式,能在线准确识别同调机群。 展开更多
关键词 广域量测系统 拉普拉斯特征映射 同调识别 特征提取
原文传递
基于局部均值分解与拉普拉斯特征映射的滚动轴承故障诊断方法 被引量:8
19
作者 徐倩倩 刘凯 +1 位作者 侯和平 徐卓飞 《中国机械工程》 EI CAS CSCD 北大核心 2016年第22期3075-3081,共7页
针对滚动轴承非平稳振动信号的特征提取及维数优化问题,提出了融合局部均值分解与拉普拉斯特征映射的轴承故障诊断方法。首先,通过局部均值分解对非平稳振动信号进行平稳化分解,提取乘积函数分量、瞬时频率及瞬时幅值的高维信号特征集;... 针对滚动轴承非平稳振动信号的特征提取及维数优化问题,提出了融合局部均值分解与拉普拉斯特征映射的轴承故障诊断方法。首先,通过局部均值分解对非平稳振动信号进行平稳化分解,提取乘积函数分量、瞬时频率及瞬时幅值的高维信号特征集;然后,将高维特征集作为拉普拉斯特征映射算法的学习对象,提取轴承高维故障特征集的内在流形分布,以获得敏感、稳定的轴承振动特征参数,实现基于非平稳振动信号分析的滚动轴承故障特征提取;最后,结合支持向量分类模型量化LMD-LE方法的特征提取效果,实现不同状况下的轴承故障分类。轴承故障样本分类识别平均正确率达到91.17%,表明LMD-LE方法有效实现了高维局部均值分解特征集合的降噪,所提取的特征矩阵对轴承故障特征描述准确。 展开更多
关键词 非平稳信号 局部均值分解 拉普拉斯特征映射 故障诊断
在线阅读 下载PDF
一种考虑风电场并网的电力系统在线同调识别策略 被引量:7
20
作者 刘扬 唐飞 +4 位作者 施浩波 刘涤尘 张立波 刘佳乐 王飞飞 《电网技术》 EI CSCD 北大核心 2019年第4期1236-1244,共9页
现有的大电网同调机组分群策略,大都仅针对功角轨迹之间的距离进行研究,忽略了风电场并网对电力系统固有振荡模式的影响。针对上述存在的同调分群不准确问题,提出了一种两阶段高风电渗透率下大电网受扰机群同调分群策略。在第1阶段,通... 现有的大电网同调机组分群策略,大都仅针对功角轨迹之间的距离进行研究,忽略了风电场并网对电力系统固有振荡模式的影响。针对上述存在的同调分群不准确问题,提出了一种两阶段高风电渗透率下大电网受扰机群同调分群策略。在第1阶段,通过修正系统的收缩导纳矩阵将风功率以电流的形式进行等值,并与其电气距离最近的同步机组进行联合分析,进而在不同潮流水平和典型工况下,离线计算其等效功角获得含风电场电力系统的改进发电机耦合程度拉普拉斯矩阵,求解其特征向量并得到离线的发电机耦合程度分类结果。在第2阶段,构建电力系统邻接图并将所得分类结果作为邻接图功角权值矩阵的约束,对高风电渗透率下大电网的改进功角拉普拉斯矩阵进行在线修正,通过特征映射算法提取其特征信息,进而通过修正的余弦相似度因子算法在线获得当前的同调分群结果。最后通过IEEE 39节点和118节点系统仿真,验证了所提策略的正确性和有效性。 展开更多
关键词 在线同调识别 含风电场电力系统 拉普拉斯特征映射 半监督算法 修正的余弦相似度因子
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部