期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于SVD的频域滤波去噪算法 被引量:6
1
作者 崔少华 单巍 +1 位作者 方振国 李峥 《河北师范大学学报(自然科学版)》 CAS 2018年第2期126-130,共5页
为了解决时域SVD分解算法对非水平同相轴去噪效果不佳的难题,提出了Eigenimage和Cadzow 2种基于SVD分解的频域去噪算法.这2种算法将数据转化到频率域,在频率切片上进行SVD去噪,将信号时移转换为相移,从根本上解决了非水平同相轴的去噪问... 为了解决时域SVD分解算法对非水平同相轴去噪效果不佳的难题,提出了Eigenimage和Cadzow 2种基于SVD分解的频域去噪算法.这2种算法将数据转化到频率域,在频率切片上进行SVD去噪,将信号时移转换为相移,从根本上解决了非水平同相轴的去噪问题,并且有良好的信号保真性.通过模型对其有效性进行验证,结果表明,Eigenimage和Cadzow算法对同相轴均有很好的去噪效果,但相比时域SVD算法,这2种算法计算量较大. 展开更多
关键词 eigenimage算法 Cadzow算法 SVD 同相轴
在线阅读 下载PDF
Source-Generated Noise Suppression Using the Singular Value Decomposition 被引量:1
2
作者 YuriyK.Tyapkin NaumYa.Marmalyevskyy +1 位作者 ZenonV.Gomyak CaiGang 《Petroleum Science》 SCIE CAS CSCD 2005年第2期57-65,共9页
Source-generated noise, such as air, refracted, guided waves, near-surface multiples, and radial ground roll, is one of the most challenging problems in the land seismic method. The interference of the noise with refl... Source-generated noise, such as air, refracted, guided waves, near-surface multiples, and radial ground roll, is one of the most challenging problems in the land seismic method. The interference of the noise with reflection events often results in a distorted representation of the subsurface and gives rise to interpretation uncertainties. To suppress the noise, geophysicists have devised various techniques in both acquisition and processing stages. Conventional processing methods, such as high-pass, f - k and hyperbolic velocity filters, however, have certain disadvantages when handling actual seismic data. In this study, we present a new hybrid method combining singular value decomposition (SVD) with a special linear transformation of the common-shot gather. The method is aimed at effectively removing the noise while minimizing harm to the signal. As compared with other methods, the SVD-based one gives a denser approximation to source-generated noise before its subtraction from the seismic data, due to the use of more appropriate basis functions. The special transformation applied in advance to the data is intended to align the source-generated noise events horizontally and thus to benefit the subsequent SVD. The effectiveness of the method in suppressing source-generated noise is demonstrated with a synthetic data set. Emphasis is put on the comparison of the performance of the method with that of conventional f - k filtering. 展开更多
关键词 Source-generated noise surface waves singular value decomposition eigenimage common-shot gather
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部