期刊文献+
共找到764篇文章
< 1 2 39 >
每页显示 20 50 100
基于双流特征交叉融合Efficient Transformer的人脸表情识别
1
作者 党宏社 孟饶辰 高宛蓉 《计算机工程与应用》 北大核心 2025年第15期251-257,共7页
面部表情识别在人机交互等现实应用中得到了越来越多的重视。为解决传统方法中由于类间相似性和类内差异引起的识别准确率低等问题,提出了一种双流特征交叉融合Efficient Transformer识别人脸表情的方法。使用IResNet50和MobileFaceNet... 面部表情识别在人机交互等现实应用中得到了越来越多的重视。为解决传统方法中由于类间相似性和类内差异引起的识别准确率低等问题,提出了一种双流特征交叉融合Efficient Transformer识别人脸表情的方法。使用IResNet50和MobileFaceNet分别提取人脸表情的图像和关键点的多尺度特征,同时采用通道注意力机制来增强关键特征并减少参数量;引入了交叉融合高效多头自注意力机制(cross fusion efficient multi-head self-attention,CFEMSA),对相同尺度的双流特征进行交叉融合,以突出面部显著特征;最后采用特征金字塔结构对不同尺度的交叉融合结果进行多尺度融合,以提高识别的准确性。提出的方法在RAF-DB、AffecNet-7和AffecNet-8数据集上的识别准确率分别为91.82%、67.46%和63.65%,实验结果证明该方法有效缓解了类间相似性和类内差异所引起的识别准确率低的问题。 展开更多
关键词 面部表情识别 Efficient Transformer 交叉融合 多尺度特征 特征融合
在线阅读 下载PDF
YOLOv8-DEL:基于改进YOLOv8n的实时车辆检测算法研究 被引量:7
2
作者 古佳欣 陈高华 张春美 《计算机工程与应用》 北大核心 2025年第1期142-152,共11页
车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convol... 车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convolution shuffle transformer)模块代替C2f模块来重构主干网络,以增强特征提取能力并使网络更轻量;添加的P2检测层能使模型更敏锐地定位和检测小目标,同时采用Efficient RepGFPN进行多尺度特征融合,以丰富特征信息并提高模型的特征表达能力;通过结合GroupNorm和共享卷积的优点,设计了一种轻量型共享卷积检测头,在保持精度的前提下,有效减少参数量并提升检测速度。与YOLOv8相比,提出的YOLOv8-DEL在BDD100K数据集和KITTI数据集上,mAP@0.5分别提高了4.8个百分点和1.2个百分点,具有实时检测速度(208.6 FPS和216.4 FPS),在检测精度和速度方面实现了更有利的折中。 展开更多
关键词 车辆检测 YOLOv8 DGCST Efficient RepGFPN 轻量级检测头
在线阅读 下载PDF
FEV-YOLOv8n:轻量化安全帽佩戴检测方法 被引量:3
3
作者 韩博 张婧婧 鲁子翱 《计算机测量与控制》 2025年第1期69-77,84,共10页
针对基线YOLOv8n检测算法结构较复杂以及现有的安全帽佩戴检测算法参数量和计算量较大,难以在终端部署等问题,提出一种基于FEV-YOLOv8n的轻量化检测模型;设计一种轻量级的FasterC2f模块改进YOLOv8n的骨干网络,实现网络的参数量和计算量... 针对基线YOLOv8n检测算法结构较复杂以及现有的安全帽佩戴检测算法参数量和计算量较大,难以在终端部署等问题,提出一种基于FEV-YOLOv8n的轻量化检测模型;设计一种轻量级的FasterC2f模块改进YOLOv8n的骨干网络,实现网络的参数量和计算量的降低;在FasterC2f模块中引入EMA注意力机制,融合空间依赖和位置信息,建立长短期的依赖关系,增强对目标表征的关注,以提高模型检测的精度;使用VoVGSCSP模块改进颈部网络,提高遮挡目标以及小目标的辨识度;实验结果表明,改进YOLOv8n模型map值为92.5%,相较于YOLOv8n算法,模型大小减少20%,计算量降低18.5%,参数量降低15.7%,为安全帽佩戴检测的轻量化研究提供理论参考。 展开更多
关键词 目标检测 安全帽 FasterC2f 轻量化 Efficient Multi-Scale Attention VoVGSCSP
在线阅读 下载PDF
基于CNN和Efficient Transformer的多尺度遥感图像语义分割算法 被引量:1
4
作者 张振利 胡新凯 +2 位作者 李凡 冯志成 陈智超 《浙江大学学报(工学版)》 北大核心 2025年第4期778-786,共9页
针对现有方法存在遥感图像的多尺度地物特征提取困难和目标边缘分割不准确的问题,提出新的语义分割算法.利用CNN和Efficient Transformer构建双编码器,解耦上下文信息和空间信息.提出特征融合模块加强编码器间的信息交互,有效融合全局... 针对现有方法存在遥感图像的多尺度地物特征提取困难和目标边缘分割不准确的问题,提出新的语义分割算法.利用CNN和Efficient Transformer构建双编码器,解耦上下文信息和空间信息.提出特征融合模块加强编码器间的信息交互,有效融合全局上下文信息和局部细节信息.构建分层Transformer结构提取不同尺度的特征信息,使编码器有效专注不同尺度的物体.提出边缘细化损失函数,缓解遥感图像目标边缘分割不准确的问题.实验结果表明,在ISPRS Vaihingen和ISPRS Potsdam数据集上,所提算法的平均交并比(MIoU)分别为72.45%和82.29%.在SAMRS数据集中的SOTA、SIOR和FAST子集上,所提算法的MIoU分别为88.81%、97.29%和86.65%,总体精度和平均交并比指标均优于对比模型.所提算法在各类不同尺度的目标上有较好的分割性能. 展开更多
关键词 遥感图像 语义分割 双编码器结构 特征融合 Efficient Transformer
在线阅读 下载PDF
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis 被引量:1
5
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
在线阅读 下载PDF
RoBERTa-GCN-EGPLinker中文实体关系联合抽取
6
作者 冯甲 张仕斌 +3 位作者 闫丽丽 秦智 昌燕 吕智颖 《计算机技术与发展》 2025年第9期132-139,共8页
实体关系抽取是自然语言处理中的核心任务之一,旨在从文本中识别出实体及其之间的关系,生成实体关系三元组,为后续的数据分析和知识发现提供基础。随着中文语言的复杂性,尤其是在实体嵌套、关系重叠等问题上,中文实体关系抽取面临着诸... 实体关系抽取是自然语言处理中的核心任务之一,旨在从文本中识别出实体及其之间的关系,生成实体关系三元组,为后续的数据分析和知识发现提供基础。随着中文语言的复杂性,尤其是在实体嵌套、关系重叠等问题上,中文实体关系抽取面临着诸多挑战。传统方法在处理这些复杂语言现象时,常常受到语法结构和上下文信息捕捉不充分的限制。因此,如何提高中文实体关系抽取的精度和效率,成为了该领域研究的重点。为了解决这些问题,提出了一种基于RoBERTa-GCN-EGPLinker的中文实体关系联合抽取方法。该方法首先利用RoBERTa-wwm-ext模型对文本进行深度语义编码,结合中文依存分析工具LTP,提取文本的依存关系和句法结构信息。接着,通过构建图卷积神经网络(GCN)和语义邻接矩阵,进一步捕捉文本中的结构化信息。这种方法不仅能够有效处理实体之间的关系,还能在面对复杂语言现象时保持较高的抽取精度。实验结果表明,该方法在公开数据集CMeIE-V2和DuIE上具有显著的优势,能够提升中文实体关系抽取的精度与效率。 展开更多
关键词 实体关系抽取 中文文本 LTP工具 RoBERTa-wwm-ext 图卷积神经网络 Efficient Glob-alPointer模型
在线阅读 下载PDF
基于EFN-YOLO的钢管表面缺陷检测
7
作者 马自勇 屈言森 +2 位作者 马立东 张之腾 孔世武 《组合机床与自动化加工技术》 北大核心 2025年第1期195-200,共6页
针对目前钢管表面缺陷视觉检测方法存在小目标缺陷难以识别的问题,提出一种基于EFN-YOLO的缺陷实时检测方法。首先,结合NWD度量和Iou loss,提出改进型N-iou loss,增强小缺陷目标的感知能力;其次,采用Efficient Former特征提取模块嵌入... 针对目前钢管表面缺陷视觉检测方法存在小目标缺陷难以识别的问题,提出一种基于EFN-YOLO的缺陷实时检测方法。首先,结合NWD度量和Iou loss,提出改进型N-iou loss,增强小缺陷目标的感知能力;其次,采用Efficient Former特征提取模块嵌入主干网络融合局部和全局特征信息,提高对细小且聚集缺陷目标的识别能力;接着,采用轻量化C2f特征提取模块替换原Yolov5的C3层,降低模型的参数量和复杂度,丰富图像的梯度流信息;最后,结合现场采集的钢管表面缺陷图片,对检测方法进行试验验证。结果表明,相较于改进前检测方法的mAP值提升5.8%,有效提升钢管表面细小缺陷检测能力,且FPS达到31,完全满足工业现场实时检测要求。 展开更多
关键词 钢管 小目标缺陷 YOLOv5 N-iou loss efficient former 深度学习
在线阅读 下载PDF
MSFAFuse:基于多尺度特征信息与注意力机制的SAR和可见光图像融合模型
8
作者 潘树焱 刘立群 《图学学报》 北大核心 2025年第2期300-311,共12页
针对单一成像原理得到的遥感图像无法提供丰富信息的问题,异源遥感图像融合技术应运而生。合成孔径雷达图像成像不受云层、天气等因素影响,但缺乏目视观测能力;可见光图像成像易受恶劣环境影响,但拥有直视效果及目标解译能力。将二者融... 针对单一成像原理得到的遥感图像无法提供丰富信息的问题,异源遥感图像融合技术应运而生。合成孔径雷达图像成像不受云层、天气等因素影响,但缺乏目视观测能力;可见光图像成像易受恶劣环境影响,但拥有直视效果及目标解译能力。将二者融合可以充分利用各自优势,得到包含更多特征信息并具有目视观测能力的高质量图像。为充分利用异源图像不同尺度特征,提出一种基于多尺度特征信息与注意力机制的SAR和可见光图像融合模型(MSFAFuse)。首先,引入鲁棒特征下采样组成特征提取部分,得到异源图像对应的多尺度特征。其次,使用特征增强模块来增强不同尺度异源特征中的结构特征及显著区域特征。然后,使用基于特征信息引导以及L1-Norm的双分支融合模块将得到的异源多尺度特征按尺度进行两两融合。最后,将不同尺度的融合结果输入图像重构模块,进行图像重建,最终获得融合图像。实验表明,MSFAFuse模型可以在保留更多细节及结构信息的同时平滑地增强突出特征。与现有融合方法相比,该模型在10种不同指标上实现了较好的效果,可以有效地融合可见光图像与SAR图像,为二者融合的发展提供了新思路,有助于推动未来遥感图像融合技术的发展。 展开更多
关键词 图像融合 多尺度特征 Efficient additive attention 遥感 深度学习
在线阅读 下载PDF
Safe flight corridor constrained sequential convex programming for efficient trajectory generation of fixed-wing UAVs 被引量:2
9
作者 Jing SUN Guangtong XU +2 位作者 Zhu WANG Teng LONG Jingliang SUN 《Chinese Journal of Aeronautics》 2025年第1期537-550,共14页
Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequent... Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time. 展开更多
关键词 Fixed-wing unmanned aerial vehicle Efficient trajectory planning Safe flight corridor Sequential convex programming Customized convex optimizer
原文传递
Ultrathin hydrogen-substituted graphdiyne nanosheets containing pdclusters used for the degradation of environmental pollutants
10
作者 SU Xin-yu QIU Sheng-en +3 位作者 YANG Hang YU Feng HAN Gao-rong CHEN Zong-ping 《新型炭材料(中英文)》 北大核心 2025年第3期666-677,共12页
Graphdiyne(GDY)and its derivatives have been considered ideal supporting materials for nanoscale active particles because of their unique atomic and electronic structure.An efficient bi-metal Cu-Pd catalyst was added ... Graphdiyne(GDY)and its derivatives have been considered ideal supporting materials for nanoscale active particles because of their unique atomic and electronic structure.An efficient bi-metal Cu-Pd catalyst was added to produce the uniform deposition of Pd nano-clusters with an average size of~0.95 nm on hydrogen-substituted GDY(HGDY)nanosheets.With the assistance of NaBH4,the resulting Pd/H-GDY was very effective in the degradation of 4-nitrophenol(4-NP),whose conversion was sharply increased to 97.21%in 100 s with a rate constant per unit mass(k`)of 8.97×10^(5)min−1 g^(−1).Additionally,dyes such as methyl orange(MO)and Congo red(CR)were completely degraded within 180 and 90 s,respectively.The Pd/H-GDY maintained this activity after 5 reduction cycles.These results highlight the promising performance of Pd/H-GDY in catalyzing the degradation of various pollutants,which is attributed to the combined effect of the largeπ-conjugated structure of the H-GDY nanosheets and the evenly distributed Pd nanoclusters. 展开更多
关键词 Graphdiyne Pollutants degradation Catalyst IN-SITU efficient
在线阅读 下载PDF
复杂交通场景下的目标检测方法
11
作者 濮志远 罗素云 《信息与控制》 北大核心 2025年第4期632-643,共12页
针对复杂交通场景目标检测方法的不足,特别是对小目标和遮挡目标的漏检及多尺度目标检测和模型鲁棒性方面的不足,提出了一种改进后的YOLOv8s-SRCEM(You Only Look Once version 8 small model with Small object detection head,Residua... 针对复杂交通场景目标检测方法的不足,特别是对小目标和遮挡目标的漏检及多尺度目标检测和模型鲁棒性方面的不足,提出了一种改进后的YOLOv8s-SRCEM(You Only Look Once version 8 small model with Small object detection head,Residual Convolutional block attention module,Efficient channel attention module,and Multi-scale block)模型:引入小目标检测头,使模型能够更加敏感地捕捉小尺寸目标,提高对小目标的检测能力;在小目标检测头上集成Res-CBAM(Residual Convolutional Block Attention Module),进一步提高特征学习的显著性;在骨干网络中加入ECA(Efficient Channel Attention)模块,强化模型对特征通道重要性的关注,提升特征选择和模型的鲁棒性;将原始的SPPF(Spatial Pyramid Pooling-Fast)模块替换为MS-Block(Multi-Scale Block),模型在不同尺度上的特征捕捉和融合能力得到增强。在KITTI数据集上,改进后的模型相比于YOLOv8s模型mAP(mean Average Precision)值提高了6.6%。实验结果表明,多种改进方案的组合使模型在复杂交通场景中的检测性能得到全面提升。 展开更多
关键词 复杂场景 小目标检测 MS-Block(Multi-Scale Block) ECA(Efficient Channel Attention) 注意力模块
原文传递
联合混合卷积与级联群注意力机制的高光谱遥感影像分类
12
作者 王晓燕 梁文辉 +2 位作者 毕楚然 李杰 王禧钰 《光谱学与光谱分析》 北大核心 2025年第5期1485-1493,共9页
高光谱遥感影像丰富的光谱信息,能够为地物分类提供可靠的数据支持。但是,光谱数据高维、冗余,空谱特征联合困难、光谱特征提取不充分等问题对基于深度学习的高光谱遥感影像分类提出了挑战。卷积神经网络(CNN)和Vision Transformer(ViT... 高光谱遥感影像丰富的光谱信息,能够为地物分类提供可靠的数据支持。但是,光谱数据高维、冗余,空谱特征联合困难、光谱特征提取不充分等问题对基于深度学习的高光谱遥感影像分类提出了挑战。卷积神经网络(CNN)和Vision Transformer(ViT)是两种在计算机视觉领域中广泛使用的深度学习架构,各自有独特的优势和局限性。CNN擅长捕捉局部特征和空间层次结构,对图像的平移不变性有很好的处理能力。ViT通过自注意力机制能够捕捉图像中的全局依赖关系,对图像的复杂模式有较好的理解能力。为了提升高光谱遥感影像的分类精度,充分发挥CNN和ViT两种模型的优势,结合CNN的局部特征提取能力和ViT的全局上下文理解能力,创新性地将3D EfficientViT模块引入混合卷积,提出了一种联合混合卷积与级联群注意力机制的高光谱遥感影像分类算法EVIT3D_HSN。本算法在三维卷积提取高光谱遥感影像空谱联合特征及二维卷积提取空间特征的基础上引入3D Efficient ViT模块,提高了对不同数据集的泛化能力、更全面地捕捉了高光谱数据的图像特征,从而增强了分类算法的性能,同时并未增加模型复杂度。为了验证本算法的先进性,将本算法EVIT3D_HSN在高光谱遥感影像分类数据集India Pines、Pavia University和Salinas,与算法1DCNN、2DCNN、3DFCN和3DCNN进行对比实验,并于原算法HybridSN进行消融实验。EVIT3D_HSN在以上三种数据集的分类结果为:OA分别为97.66%、99.00%和99.65%,Kappa系数分别为97.3%、98.6%和99.6%。相比于1DCNN,模型分类精度分别提升了37.12%、25.09%和33.67%;相比于2DCNN,精度分别提升了59%、57.43%和46.92%;相比于3DFCN,精度分别提升了45.36%、24.5%和29.72%;相比于3DCNN,精度分别提升了28.05%、14.26%和34.29%;相比于HybridSN,分别提升了3.76%、1.85%和2.57%。此外,除IP数据集的Stone-Steel-Towers,PU数据集的Painted metal sheets和Shadows,以及SA数据集的Stubble地物之外,EVIT3D_HSN对其他共37种地物的F1值均最高。实验结果表明,EVIT3D_HSN在模型精度和泛化能力上的表现优于上述五种高光谱遥感影像分类算法,本模型具有良好的实用价值。 展开更多
关键词 高光谱遥感影像分类 混合卷积 3D Efficient ViT 级联群注意力
在线阅读 下载PDF
Unleashing the power of chelation:A universalπ-conjugated ligand for enhanced crystallization and defect passivation in perovskite photovoltaics
13
作者 Yangdi Chen Wenfeng Zhang +10 位作者 Jun Qu Huiyao Zhao Rui Zhou Yanbei Wei Dongyong Fan Hongjie Wan Yuchen Luo Jie Deng Haijin Li Hanyu Wang Wenhua Zhang 《Journal of Energy Chemistry》 2025年第8期357-366,共10页
During the crystallization of perovskite films,defects at Pb and I sites are generated,causing lattice mismatch and adversely affecting the performance of perovskite solar cells(PSCs).Herein,we introduced aπ-conjugat... During the crystallization of perovskite films,defects at Pb and I sites are generated,causing lattice mismatch and adversely affecting the performance of perovskite solar cells(PSCs).Herein,we introduced aπ-conjugated molecule with a dual-ring structure,namely CCA(3,4-ethylenedioxythiophene-2,5-dicarboxylic acid),as an additive to regulate the crystallization of perovskite films and passivate defects.As a bidentate Lewis base,CCA coordinates the bidentate carboxyl groups with free Pb^(2+)through the delocalized electrons of its conjugated ring.This coordination regulates lattice stress,repairs the 3D[PbI6]octahedra,stabilizes the perovskite framework,and guides the vertical orientation growth of grains.Simultaneously,the addition of CCA shifts the perovskite’s band structure towards p-type,achieving better energy-level alignment with the doped hole-transport layer(HTL)and suppressing non-radiative recombination.Consequently,the prepared CCA-doped single-junction devices exhibit an outstanding power conversion efficiency(PCE)of 24.90%,with a high open-circuit voltage(VOC)of 1.195,a high fill factor(FF)of 84.60%,and low FF loss.The optimized films and devices show enhanced long-term stability,retaining 80.1%of the initial efficiency after continuous illumination for 560 h.Additionally,a PCE of 21.6%was achieved in devices with a bandgap of 1.68 eV,which were further extended to perovskite/silicon tandem devices,achieving high-performance devices with PCEs of 30.96%(aperture area:1.05 cm^(2))and 25.96%(aperture area:20.06 cm^(2)). 展开更多
关键词 π-conjugated CHELATION Multiple devices Solar cells Efficient
在线阅读 下载PDF
Laser-based fabrication of superhydrophobic glass with high transparency and robustness
14
作者 LIU Chao WANG Qing-hua +4 位作者 GE Zhi-qiang LI Hao-yu FU Jia-jun WANG Hui-xin ZHANG Tai-rui 《Journal of Central South University》 2025年第1期160-173,共14页
Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably aff... Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably affect the surface transparency and limit the application of glass materials.To resolve the contradiction between the surface transparency and the robust superhydrophobicity,an efficient and low-cost laser-chemical surface functionalization process was utilized to fabricate superhydrophobic glass surface.The results show that the air can be effectively trapped in surface micro/nanostructure induced by laser texturing,thus reducing the solid-liquid contact area and interfacial tension.The deposition of hydrophobic carbon-containing groups on the surface can be accelerated by chemical treatment,and the surface energy is significantly reduced.The glass surface exhibits marvelous robust superhydrophobicity with a contact angle of 155.8°and a roll-off angle of 7.2°under the combination of hierarchical micro/nanostructure and low surface energy.Moreover,the surface transparency of the prepared superhydrophobic glass was only 5.42%lower than that of the untreated surface.This superhydrophobic glass with high transparency still maintains excellent superhydrophobicity after durability and stability tests.The facile fabrication of superhydrophobic glass with high transparency and robustness provides a strong reference for further expanding the application value of glass materials. 展开更多
关键词 superhydrophobic glass laser-chemical functionalization TRANSPARENCY ROBUSTNESS highly efficient
在线阅读 下载PDF
A parallel chemical reaction optimization method based on preference-based multi-objective expected improvement
15
作者 Mingqi Jiang Zhuo Wang +1 位作者 Zhijian Sun Jian Wang 《Chinese Journal of Chemical Engineering》 2025年第2期82-92,共11页
Optimizing chemical reaction parameters is an expensive optimization problem. Each experiment takes a long time and the raw materials are expensive. High-throughput methods combined with the parallel Efficient Global ... Optimizing chemical reaction parameters is an expensive optimization problem. Each experiment takes a long time and the raw materials are expensive. High-throughput methods combined with the parallel Efficient Global Optimization algorithm can effectively improve the efficiency of the search for optimal chemical reaction parameters. In this paper, we propose a multi-objective populated expectation improvement criterion for providing multiple near-optimal solutions in high-throughput chemical reaction optimization. An l-NSGA2, employing the Pseudo-power transformation method, is utilized to maximize the expected improvement acquisition function, resulting in a Pareto solution set comprising multiple designs. The approximation of the cost function can be calculated by the ensemble Gaussian process model, which greatly reduces the cost of the exact Gaussian process model. The proposed optimization method was tested on a SNAr benchmark problem. The results show that compared with the previous high-throughput experimental methods, our method can reduce the number of experiments by almost half. At the same time, it theoretically enhances temporal and spatial yields while minimizing by-product formation, potentially guiding real chemical reaction optimization. 展开更多
关键词 Algorithm Chemical reaction Computer simulation Efficient global optimization Machine learning
在线阅读 下载PDF
EFI-SATL:An Efficient Net and Self-Attention Based Biometric Recognition for Finger-Vein Using Deep Transfer Learning
16
作者 Manjit Singh Sunil Kumar Singla 《Computer Modeling in Engineering & Sciences》 2025年第3期3003-3029,共27页
Deep Learning-based systems for Finger vein recognition have gained rising attention in recent years due to improved efficiency and enhanced security.The performance of existing CNN-based methods is limited by the pun... Deep Learning-based systems for Finger vein recognition have gained rising attention in recent years due to improved efficiency and enhanced security.The performance of existing CNN-based methods is limited by the puny generalization of learned features and deficiency of the finger vein image training data.Considering the concerns of existing methods,in this work,a simplified deep transfer learning-based framework for finger-vein recognition is developed using an EfficientNet model of deep learning with a self-attention mechanism.Data augmentation using various geometrical methods is employed to address the problem of training data shortage required for a deep learning model.The proposed model is tested using K-fold cross-validation on three publicly available datasets:HKPU,FVUSM,and SDUMLA.Also,the developed network is compared with other modern deep nets to check its effectiveness.In addition,a comparison of the proposed method with other existing Finger vein recognition(FVR)methods is also done.The experimental results exhibited superior recognition accuracy of the proposed method compared to other existing methods.In addition,the developed method proves to be more effective and less sophisticated at extracting robust features.The proposed EffAttenNet achieves an accuracy of 98.14%on HKPU,99.03%on FVUSM,and 99.50%on SDUMLA databases. 展开更多
关键词 Biometrics finger-vein recognition(FVR) deep net self-attention Efficient Nets transfer learning
在线阅读 下载PDF
A comprehensive review on the scalable and sustainable synthesis of covalent organic frameworks
17
作者 Yujie Wang Haoran Wang +3 位作者 Yanni Liu Manhua Peng Hongwei Fan Hong Meng 《Chinese Chemical Letters》 2025年第8期190-206,共17页
Covalent organic frameworks(COFs),as a burgeoning class of crystalline porous materials have attracted widespread interest due to their designable structures and customized functions.However,the solvothermal synthesis... Covalent organic frameworks(COFs),as a burgeoning class of crystalline porous materials have attracted widespread interest due to their designable structures and customized functions.However,the solvothermal synthesis of COFs is often time-consuming and conducted at a high temperature within a sealed vessel,and also requires a large amount of poisonous solvents,which is generally not available for scaling-up production and commercial application.In recent years,great efforts have been made to explore simple,green,and efficient approaches for COFs synthesis.In this comprehensive review,we summarized the advances in emergent strategies by highlighting their distinct features.Fundamental issues and future directions are also discussed with the object of bringing implications for large-scale and sustainable fabrication of COFs. 展开更多
关键词 Covalent organic frameworks Large-scaleproduction Green synthesis Efficient synthesis Ambient synthesis
原文传递
Efficient Production of Pyrrolnitrin by Optimizing Culture Medium and Blocking Competitive Secondary Metabolic Pathways in Pseudomonas protegens JP2-4390
18
作者 SHEN Jiamin ZHANG Xinxin +2 位作者 WANG Yucong CHEN Guoqing FENG Guozhong 《Rice science》 2025年第2期156-159,I0033-I0040,共12页
Pyrrolnitrin(PRN),a natural halogenated phenylpyrrole derivative,exhibits a broad spectrum of antimicrobial activity against a wide range of bacteria and fungi.In this study,we isolated a strain of Pseudomonas protege... Pyrrolnitrin(PRN),a natural halogenated phenylpyrrole derivative,exhibits a broad spectrum of antimicrobial activity against a wide range of bacteria and fungi.In this study,we isolated a strain of Pseudomonas protegens JP2-4390 from the rhizosphere soil of rice plants,which showed strong inhibitory activity against Rhizoctonia solani. 展开更多
关键词 DERIVATIVE spectrum Efficient
在线阅读 下载PDF
Quantum-Size FeS_(2) with Delocalized Electronic Regions Enable High-Performance Sodium-Ion Batteries Across Wide Temperatures
19
作者 Tianlin Li Danyang Zhao +8 位作者 Meiyu Shi Chao Tian Jie Yi Qing Yin Yongzhi Li Bin Xiao Jiqiu Qi Peng Cao Yanwei Sui 《Nano-Micro Letters》 2026年第1期355-374,共20页
Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique ... Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique advantages of charge delocalization and enrich uncoordinated electrons and short-range transfer kinetics,which are crucial to achieve rapid low-temperature charge transfer and high-temperature interface stability.Herein,a quantum-scale FeS_(2) loaded on three-dimensional Ti_(3)C_(2) MXene skeletons(FeS_(2) QD/MXene)fabricated as SIBs anode,demonstrating impressive performance under wide-temperature conditions(−35 to 65).The theoretical calculations combined with experimental characterization interprets that the unsaturated coordination edges of FeS_(2) QD can induce delocalized electronic regions,which reduces electrostatic potential and significantly facilitates efficient Na+diffusion across a broad temperature range.Moreover,the Ti_(3)C_(2) skeleton reinforces structural integrity via Fe-O-Ti bonding,while enabling excellent dispersion of FeS_(2) QD.As expected,FeS_(2) QD/MXene anode harvests capacities of 255.2 and 424.9 mAh g^(−1) at 0.1 A g^(−1) under−35 and 65,and the energy density of FeS_(2) QD/MXene//NVP full cell can reach to 162.4 Wh kg^(−1) at−35,highlighting its practical potential for wide-temperatures conditions.This work extends the uncoordinated regions induced by quantum-size effects for exceptional Na^(+)ion storage and diffusion performance at wide-temperatures environment. 展开更多
关键词 Quantum-size effect Electron delocalization Efficient short-range transfer kinetics Wide-temperature Sodium-ion batteries
在线阅读 下载PDF
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
20
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 Large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部