期刊文献+
共找到540,753篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing box-wing design efficiency through machine learning based optimization 被引量:1
1
作者 Mehedi HASAN Azad KHANDOKER 《Chinese Journal of Aeronautics》 2025年第2期46-59,共14页
The optimization of wings typically relies on computationally intensive high-fidelity simulations,which restrict the quick exploration of design spaces.To address this problem,this paper introduces a methodology dedic... The optimization of wings typically relies on computationally intensive high-fidelity simulations,which restrict the quick exploration of design spaces.To address this problem,this paper introduces a methodology dedicated to optimizing box wing configurations using low-fidelity data driven machine learning approach.This technique showcases its practicality through the utilization of a tailored low-fidelity machine learning technique,specifically designed for early-stage wing configuration.By employing surrogate model trained on small dataset derived from low-fidelity simulations,our method aims to predict outputs within an acceptable range.This strategy significantly mitigates computational costs and expedites the design exploration process.The methodology's validation relies on its successful application in optimizing the box wing of PARSIFAL,serving as a benchmark,while the primary focus remains on optimizing the newly designed box wing by Bionica.Applying this method to the Bionica configuration led to a notable 14%improvement in overall aerodynamic effciency.Furthermore,all the optimized results obtained from machine learning model undergo rigorous assessments through the high-fidelity RANS analysis for confirmation.This methodology introduces innovative approach that aims to streamline computational processes,potentially reducing the time and resources required compared to traditional optimization methods. 展开更多
关键词 Box wing optimization Aerodynamic shape optimization Multi-objective optimization Machine learning Multi-fidelity method
原文传递
Energy Efficiency Operating Indicator Forecasting and Speed Design Optimization for Polar Ice Class Merchant Vessels
2
作者 LU Yu LI Chen−ran +3 位作者 ZHU Xiang−hang LI Shi−an GU Zhu−hao LIU She−wen 《船舶力学》 北大核心 2025年第6期901-911,共11页
In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p... In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t. 展开更多
关键词 Energy efficiency Operational Indicator ice-class ships segment division design optimization
在线阅读 下载PDF
The Role of Artificial Intelligence in Energy Optimization and Efficiency
3
作者 Sneh Parikh 《Journal of Energy and Power Engineering》 2025年第3期85-90,共6页
AI’s(artificial intelligence)groundbreaking impact on energy optimization and efficiency across various fields is growing,minimizing costs,increasing environmental sustainability,and improving energy resource managem... AI’s(artificial intelligence)groundbreaking impact on energy optimization and efficiency across various fields is growing,minimizing costs,increasing environmental sustainability,and improving energy resource management.As the global energy demand is predicted to rise,traditional energy management methods are proved to be inefficient,calling for new,innovative AI-driven solutions.This research unfolds the revolutionary impact of AI in energy optimization,focusing on its modern approaches,most significantly,predictive maintenance and analytics.A notable achievement is reflected by Stem Inc.,whose AI-powered energy storage system reduced its electricity costs by 60%,through predictive analytics of demand-based battery charging and discharging.Additionally,the study also investigates the logic behind AI’s energy optimization methods and AI’s role in crucial sectors like oil extraction,solar energy maintenance,and smart buildings,showcasing its flexibility across various fields.Finally,the study also uncovers a groundbreaking solution to improve AI’s role in energy optimization.Ultimately,this paper highlights the significance of AI in energy optimization and efficiency in the 21st century,the current methods used,and its projected growth and potential in the future. 展开更多
关键词 efficiency optimization predictive analytics predictive maintenance SUSTAINABILITY AUTOMATION
在线阅读 下载PDF
Synergistic optimization of efficiency-microstructure-performance in wire-arc additive manufacturing of AZ31 magnesium alloy
4
作者 Zihao Jiang Caiyou Zeng +3 位作者 Zijin Chang Ziqi Li Yuan Zhao Baoqiang Cong 《Journal of Magnesium and Alloys》 2025年第11期5571-5588,共18页
In wire arc additive manufacturing(WAAM),a trade-off exists among deposition efficiency,microstructure,and mechanical properties.Addressing this challenge,this work proposes an innovative multi-objective optimization ... In wire arc additive manufacturing(WAAM),a trade-off exists among deposition efficiency,microstructure,and mechanical properties.Addressing this challenge,this work proposes an innovative multi-objective optimization framework tailored for WAAM of AZ31 magnesium alloy components,which integrates deposition efficiency and microstructure as coupled objectives and is resolved through the NSGA-Ⅱ algorithm.The proposed framework employs quadratic regression to correlate process parameters with deposition efficiency through geometric morphology mediation,while addressing uncertainties in WAAM by integrating theoretical insights with data-driven stacked ensemble learning for grain size prediction,establishing the hybrid physics-informed data method for WAAM microstructure prediction.The optimized process achieved a deposition rate of 6257 mm3/min,with effective width and average layer height maintained at 10.1 mm and 4.13 mm,respectively.Microstructural optimization produced a fine,uniform,fully equiaxed grain structure with an average grain size of 38μm.These findings underscore the significant industrial potential of intelligent optimization strategies in WAAM for manufacturing lightweight,high-performance components in aerospace and transportation sectors. 展开更多
关键词 Wire-arc additive manufacturing Magnesium alloys Deposition efficiency MICROSTRUCTURE Process optimization
在线阅读 下载PDF
Optimization of Dimensional Factors Using AI Technique Affecting Solar Dryer Efficiency for Drying Agricultural Materials
5
作者 Ravendra Kumar Ray A.C.Tiwari 《Computers, Materials & Continua》 2025年第4期845-860,共16页
The design and development of solar dryers are crucial in regions with abundant solar energy,such as Bhopal,India,where seasonal variations significantly impact the efficiency of drying processes.The paper is focused ... The design and development of solar dryers are crucial in regions with abundant solar energy,such as Bhopal,India,where seasonal variations significantly impact the efficiency of drying processes.The paper is focused on employing a comprehensive mathematical model to predict the dryer’s performance in drying the materials such as banana slices.To enhance this model,Hyper Tuned Swarm Optimization with Gradient Tree(HT_SOGT)was utilized to accurately predict and determine the optimal size of the dryer dimensions considering various mathematical calculations for material drying.The predictive model considered the influence of seasonal fluctuations,ensuring an efficient drying process with an objective function to optimize the drying time of an average of 7 hrs throughout the year.Across all recorded ambient temperatures(ranging from 16.985○C to 31.4○C),the outlet temperature of the solar dryer is consistently higher,ranging from 39.085○C to 66.2○C.The results show that the optimized dryer design,based on HT_SOGT modelling,significantly improves drying efficiency of the materials across varying conditions,making it suitable for sustainable applications in agriculture and food processing industries in the Bhopal region. 展开更多
关键词 Solar dryer swarm optimization algorithm drying time drying efficiency IRRADIATION agricultural materials
在线阅读 下载PDF
Enhancing ITS Reliability and Efficiency through Optimal VANET Clustering Using Grasshopper Optimization Algorithm
6
作者 Seongsoo Cho Yeonwoo Lee Cheolhee Yoon 《Computer Modeling in Engineering & Sciences》 2025年第6期3769-3793,共25页
As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphas... As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios. 展开更多
关键词 Grasshopper optimization algorithm VANET intelligent transportation systems traffic congestion clustering efficiency
在线阅读 下载PDF
Research on Governance Mechanisms and Supply Chain Efficiency Optimization of the Smart Home Enterprise Ecological Collaboration Platform
7
作者 Wen Peng 《Proceedings of Business and Economic Studies》 2025年第4期1-6,共6页
This paper focuses on the core challenges of the smart home enterprise ecological collaboration platform,and deeply discusses the absence of a governance mechanism and the inefficiency of the supply chain.The purpose ... This paper focuses on the core challenges of the smart home enterprise ecological collaboration platform,and deeply discusses the absence of a governance mechanism and the inefficiency of the supply chain.The purpose is to improve the overall efficiency by constructing an effective collaborative governance framework and optimizing the supply chain process.It is found that the implementation of multi-agent dynamic contract governance,the construction of an open data sharing middle platform,the introduction of AI-driven elastic supply chain planning,and the establishment of a distributed cloud manufacturing network are the key paths.From the research conclusion,these measures can significantly improve the transparency of cross-agent collaboration,break the data barriers,and achieve the accurate matching of supply and demand,and finally promote the ecological collaboration efficiency of the smart home industry to achieve a substantial leap. 展开更多
关键词 Smart home Ecological collaboration platform Governance mechanism Supply chain efficiency optimization research
在线阅读 下载PDF
Balanced Optimization of Dimensional Accuracy and Printing Efficiency in FDM Based on Data-Driven Modeling
8
作者 Liu Changhui Li Hao +5 位作者 Yu Chunlong Liao Xueru Liu Xiaojia Sun Jianzhi Tang Qirong Yu Min 《Additive Manufacturing Frontiers》 2025年第2期97-110,共14页
Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring... Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM. 展开更多
关键词 Fused deposition modeling Dimensional accuracy Process parameters Printing efficiency Balanced optimization Sustainable manufacturing
在线阅读 下载PDF
Efficiency Analysis and Performance Optimization of Heat Recovery Ventilators(HRVs)for Residential Indoor Air Quality Enhancement in Cold Climates
9
作者 Hamed Yousefzadeh Eini Mohammad Hossein Sabouri Mojtaba Babaelahi 《Fluid Dynamics & Materials Processing》 2025年第7期1771-1788,共18页
Heat Recovery Ventilators(HRVs)are essential for improving indoor air quality(IAQ)and reducing energy consumption in residential buildings situated in cold climates.This study considers the efficiency and performance ... Heat Recovery Ventilators(HRVs)are essential for improving indoor air quality(IAQ)and reducing energy consumption in residential buildings situated in cold climates.This study considers the efficiency and performance optimization of HRVs under cold climatic conditions,where conventional ventilation systems increase heat loss.A comprehensive numerical model was developed using COMSOL Multiphysics,integrating fluid dynamics,heat transfer,and solid mechanics to evaluate the thermal efficiency and structural integrity of an HRV system.The methodology employed a detailed geometry with tetrahedral elements,temperature-dependent material properties,and coupled governing equations solved under Tehran-specific boundary conditions.A multi-objective optimization was implemented in the framework of the Nelder-Mead simplex algorithm,targeting the maximization of the average outlet temperature and minimization of the maximum von Mises thermal stress,with inlet flow velocity as the design variable(range:0.5–1.2m/s).Results indicate an optimal velocity of 0.51563 m/s,achieving an average outlet temperature of 289.44 K and maximum von Mises stress of 221 MPa,validated through mesh independence and detailed contour analyses of temperature,velocity,and stress distributions. 展开更多
关键词 Heat recovery ventilators indoor air quality cold climate energy efficiency multi-objective optimization
在线阅读 下载PDF
Energy Efficiency Optimization for Active Reconfigurable Intelligent Surface Assisted Multi-Antenna Jamming Systems
10
作者 Qin Hao Zhu Jia +5 位作者 Zou Yulong Li Yizhi Lou Yulei Zhang Afei Hui Hao Qin Changjian 《China Communications》 2025年第6期44-56,共13页
In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assiste... In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assisted multi-antenna jamming(MAJ)scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission.In order to strike a balance between the jamming performance and the energy consumption,we consider a so-called jamming energy efficiency(JEE)which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption.We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer’s beamforming vector and ARIS’s reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user’s detection threshold.To address the non-convex optimization problem,we propose the Dinkelbach-based alternating optimization(AO)algorithm by applying the semidefinite relaxation(SDR)algorithm with Gaussian randomization method.Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface(PRIS)-assisted multi-antenna jamming(PRIS-MAJ)scheme and the conventional multiantenna jamming scheme without RIS(NRIS-MAJ)in terms of the JEE. 展开更多
关键词 active reconfigurable intelligent surface(ARIS) beamforming optimization jamming energy efficiency(JEE)
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
11
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Max-min security energy efficiency optimization for UAV-RIS-enhanced short-packet communication systems 被引量:1
12
作者 Zhengqiang WANG Kunhao HUANG +3 位作者 Yongjun XU Bin DUO Chengyu WU Liuwei HUO 《Chinese Journal of Aeronautics》 2025年第10期271-285,共15页
This work focuses on maximizing the minimum user’s security energy efficiency(SEE)in an unmanned aerial vehicle-mounted reconfigurable intelligent surface(UAV-RIS)enhanced short-packet communication(SPC)system.The ba... This work focuses on maximizing the minimum user’s security energy efficiency(SEE)in an unmanned aerial vehicle-mounted reconfigurable intelligent surface(UAV-RIS)enhanced short-packet communication(SPC)system.The base station(BS)provides short packet services to ground users using the non-orthogonal multiple access(NOMA)protocol through UAV-RIS,while preventing eavesdropper attacks.To optimize SEE,a joint optimization is performed concerning power allocation,UAV position,decoding order,and RIS phase shifts.An iterative algorithm based on block coordinate descent is proposed for mixed-integer non-convex SEE optimization problem.The original problem is decomposed into three sub-problems,solved alternately using successive convex approximation(SCA),quadratic transformation,penalty function,and semi-definite programming(SDP).Simulation results demonstrate the performance of the UAV-RIS-enhanced short-packet system under different parameters and verify the algorithm’s convergence.Compared to benchmark schemes such as orthogonal multiple access,long packet communication,and sum SEE,the proposed UAV-RIS-enhanced short-packet scheme achieves the higher minimum user’s SEE. 展开更多
关键词 Block coordinate descent Non-orthogonal multiple access(NOMA) Reconfigurable intelligent surface(RIS) Security energy efficiency(SEE) Short-packet communication Unmanned aerial vehicle(UAV)
原文传递
Performance Analysis and Energy Efficiency Optimization of UAV-Aided Backscatter Communication System
13
作者 Xiang Ling FengWenjiang +1 位作者 Zou Yongqi Zhang Juntao 《China Communications》 2025年第10期149-160,共12页
Backscatter communication(BC)is con-sidered a key technology in self-sustainable commu-nications,and the unmanned aerial vehicle(UAV)as a data collector can improve the efficiency of data col-lection.We consider a UAV... Backscatter communication(BC)is con-sidered a key technology in self-sustainable commu-nications,and the unmanned aerial vehicle(UAV)as a data collector can improve the efficiency of data col-lection.We consider a UAV-aided BC system,where the power beacons(PBs)are deployed as dedicated radio frequency(RF)sources to supply power for backscatter devices(BDs).After harvesting enough energy,the BDs transmit data to the UAV.We use stochastic geometry to model the large-scale BC sys-tem.Specifically,the PBs are modeled as a type II Mat´ern hard-core point process(MHCPP II)and the BDs are modeled as a homogeneous Poisson point process(HPPP).Firstly,the BDs’activation proba-bility and average coverage probability are derived.Then,to maximize the energy efficiency(EE),we opti-mize the RF power of the PBs under different PB den-sities.Furthermore,we compare the coverage proba-bility and EE performance of our system with a bench-mark scheme,in which the distribution of PBs is mod-eled as a HPPP.Simulation results show that the PBs modeled as MHCPP II has better performance,and we found that the higher the density of PBs,the smaller the RF power required,and the EE is also higher. 展开更多
关键词 backscatter communication coverage probability energy efficiency UAV-assisted commu-nication
在线阅读 下载PDF
In situ insights into hot-solution-induced morphology optimization for high-efficiency non-fullerene organic solar cells
14
作者 Mandi Li Fenghua Zhang +6 位作者 Yu Chen Yang Liu Dan Wang Zhibang Shen Jia Zhao Denghui Xu Xiong Li 《Journal of Energy Chemistry》 2025年第11期864-872,I0019,共10页
In this study,high-performance D18:L8-BO bulk heterojunction organic solar cells(OSCs)were prepared by employing a hot-solution strategy to optimize the active layer morphology during the film solidification process.B... In this study,high-performance D18:L8-BO bulk heterojunction organic solar cells(OSCs)were prepared by employing a hot-solution strategy to optimize the active layer morphology during the film solidification process.By heating the chloroform(CF)solution to 70℃(slightly above the boiling point of CF,~61.2℃),an optimal balance between solvent evaporation and molecular self-assembly was achieved,resulting in enhanced crystallinity,favorable π-π stacking,and ideal nanoscale phase separation.These improvements significantly boost the power conversion efficiency from 17.74%(for the device processed at a room temperature of 30℃)to 19.56%.Moreover,the in-situ grazing-incidence wide-angle X-ray scattering technology was utilized to monitor the crystallization and morphology evolution of the active layer,offering real-time insights into molecule self-assembly and phase separation dynamics during active layer solidification.This work not only provides a simple and scalable approach for fabricating high-efficiency OSCs but also offers fundamental insights into the influence of solution temperature on active layer morphology evolution dynamics,paving the way for large-scale industrial production of organic solar cells. 展开更多
关键词 Organic solar cells Hot-solution In situ Active layer Power conversion efficiency
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
15
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
16
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Asymmetric Side‑Group Engineering of Nonfused Ring Electron Acceptors for High‑Efficiency Thick‑Film Organic Solar Cells
17
作者 Dawei Li Nan Wei +11 位作者 Ya‑Nan Chen Xiaodong Wang Xu Han Ziqing Bian Xinyuan Zhang Zhe Zhang Wenkai Zhang Xinjun Xu Cuihong Li Yahui Liu Hao Lu Zhishan Bo 《Nano-Micro Letters》 2026年第3期227-239,共13页
A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamin... A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamino side groups,TT-Ph-C6 demonstrates excellent solubility and its crystal structure exhibits compact packing structures with a three-dimensional molecular stacking network.These structural attributes markedly promote exciton diffusion and charge carrier mobility,particularly advantageous for the fabrication of thick-film devices.TT-Ph-C6-based devices have attained a PCE of 18.01%at a film thickness of 100 nm,and even at a film thickness of 300 nm,the PCE remains at 14.64%,surpassing that of devices based on 2BTh-2F.These remarkable properties position TT-Ph-C6 as a highly promising NFREA material for boosting the efficiency of OSCs. 展开更多
关键词 Organic solar cells Nonfused ring electron acceptors ASYMMETRIC Power conversion efficiency
在线阅读 下载PDF
Emittance optimization of gridded thermionic‑cathode electron gun for high‑quality beam injectors
18
作者 Xiao‑Yu Peng Hao Hu +3 位作者 Tong‑Ning Hu Jian Pang Jian‑Jun Deng Guang‑Yao Feng 《Nuclear Science and Techniques》 2026年第1期119-129,共11页
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced... Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector. 展开更多
关键词 Electron gun Gridded Beam injector Beam dynamics Emittance optimization
在线阅读 下载PDF
Dynamic Boundary Optimization via IDBO-VMD:A Novel Power Allocation Strategy for Hybrid Energy Storage with Enhanced Grid Stability
19
作者 Zujun Ding Qi Xiang +10 位作者 Chengyi Li Mengyu Ma Chutong Zhang Xinfa Gu Jiaming Shi Hui Huang Aoyun Xia Wenjie Wang Wan Chen Ziluo Yu Jie Ji 《Energy Engineering》 2026年第1期527-552,共26页
In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved D... In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer(IDBO)with VariationalMode Decomposition(VMD).The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations.This study innovatively improves the traditional variational mode decomposition(VMD)algorithm,and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO selfoptimization of key parameters K and a.On this basis,Fourier transform technology is used to define the boundary point between high frequency and low frequency signals,and a targeted energy distribution strategy is proposed:high frequency fluctuations are allocated to supercapacitors to quickly respond to transient power fluctuations;Lowfrequency components are distributed to lead-carbon batteries,optimizing long-term energy storage and scheduling efficiency.This strategy effectively improves the response speed and stability of the energy storage system.The experimental results demonstrate that the IDBO-VMD algorithm markedly outperforms traditional methods in both decomposition accuracy and computational efficiency.Specifically,it effectively reduces the charge–discharge frequency of the battery,prolongs battery life,and optimizes the operating ranges of the state-of-charge(SOC)for both leadcarbon batteries and supercapacitors.In addition,the energy management strategy based on the algorithm not only improves the overall energy utilization efficiency of the system,but also shows excellent performance in the dynamic management and intelligent scheduling of renewable energy generation. 展开更多
关键词 Energy efficiency hybrid energy storage system intelligent algorithm power fluctuation mitigation renewable energy
在线阅读 下载PDF
Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction
20
作者 Hongyu Wang Wenwu Cui +4 位作者 Kai Cui Zixuan Meng BinLi Wei Zhang Wenwen Li 《Energy Engineering》 2026年第1期332-355,共24页
To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobje... To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization. 展开更多
关键词 Carbon factor prediction electric vehicles ordered charging multi-objective optimization Crossformer
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部