Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and...Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and cut-open magnetic circuit,their efficiency and power factor are quite low,which limit their application in high power drive systems.To attempt this challenge,this work presents a system-level optimization method for a single-sided linear induction motor drive system.Not only the motor but also the control system is included in the analysis.A system-level optimization method is employed to gain optimal steady-state and dynamic performances.To validate the effectiveness of the proposed optimization method,experimental results on a linear induction motor drive are presented and discussed.展开更多
Two new techniques for efficiency-optimization control(EOC) of induction motor drives were proposed. The first method combined Loss Model and "golden section technique", which was faster than the available m...Two new techniques for efficiency-optimization control(EOC) of induction motor drives were proposed. The first method combined Loss Model and "golden section technique", which was faster than the available methods. Secondly, the low-frequency ripple torque due to decrease of rotor flux was compensated in a feedforward manner. If load torque or speed command changed, the efficiency search algorithm would be abandoned and the rated flux would be established to get the best transient response. The close agreement between the simulation and the experimental results confirmed the validity and usefulness of the proposed techniques.展开更多
文摘Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and cut-open magnetic circuit,their efficiency and power factor are quite low,which limit their application in high power drive systems.To attempt this challenge,this work presents a system-level optimization method for a single-sided linear induction motor drive system.Not only the motor but also the control system is included in the analysis.A system-level optimization method is employed to gain optimal steady-state and dynamic performances.To validate the effectiveness of the proposed optimization method,experimental results on a linear induction motor drive are presented and discussed.
文摘Two new techniques for efficiency-optimization control(EOC) of induction motor drives were proposed. The first method combined Loss Model and "golden section technique", which was faster than the available methods. Secondly, the low-frequency ripple torque due to decrease of rotor flux was compensated in a feedforward manner. If load torque or speed command changed, the efficiency search algorithm would be abandoned and the rated flux would be established to get the best transient response. The close agreement between the simulation and the experimental results confirmed the validity and usefulness of the proposed techniques.