A GaN vertical light emitting diode(LED)with a current block layer(CBL)was investigated.Vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL were fabricated.Optical and electrica...A GaN vertical light emitting diode(LED)with a current block layer(CBL)was investigated.Vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL were fabricated.Optical and electrical tests were carried out.The results show that the light output power of vertical LEDs with a non-ohmic contact CBL and with a silicon dioxide CBL are 40.6%and 60.7%higher than that of vertical LEDs without a CBL at 350 mA,respectively.The efficiencies of vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL drop to 72%,78%and 85.5%of their maximum efficiency at 350 mA,respectively. Moreover,vertical LEDs with a non-ohmic contact CBL have relatively superior anti-electrostatic ability.展开更多
The origin of the efficiency drop of quantum dot light-emitting diode(QLED)under consecutive voltage sweeps is still a puzzle.In this work,we report the voltage sweep behavior of QLED.We observed the efficiency drop o...The origin of the efficiency drop of quantum dot light-emitting diode(QLED)under consecutive voltage sweeps is still a puzzle.In this work,we report the voltage sweep behavior of QLED.We observed the efficiency drop of red QLED with ZnMgO electron transport layer(ETL)under consecutive voltage sweeps.In contrast,the efficiency increases for ZnO ETL device.By analyzing the electrical characteristics of both devices and surface traps of ZnMgO and ZnO nanoparticles,we found the efficiency drop of ZnMgO device is related to the hole leakage mediated by trap state on ZnMgO nanoparticles.For ZnO device,the efficiency raise is due to suppressed electron leakage.The hole leakage also causes rapid lifetime degradation of ZnMgO device.However,the efficiency and lifetime degradation of ZnMgO device can be eliminated with shelf aging.Our work reveals the distinct voltage sweep behavior of QLED based on different ETLs and may help to understand the lifetime degradation mechanism in QLED.展开更多
基金Project supported by the National High Technology Research and Development Program of China(No2008AA03A197)the Knowledge Innovation Program of ISCAS(No08S4060000)
文摘A GaN vertical light emitting diode(LED)with a current block layer(CBL)was investigated.Vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL were fabricated.Optical and electrical tests were carried out.The results show that the light output power of vertical LEDs with a non-ohmic contact CBL and with a silicon dioxide CBL are 40.6%and 60.7%higher than that of vertical LEDs without a CBL at 350 mA,respectively.The efficiencies of vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL drop to 72%,78%and 85.5%of their maximum efficiency at 350 mA,respectively. Moreover,vertical LEDs with a non-ohmic contact CBL have relatively superior anti-electrostatic ability.
基金supported by Key-Area Research and Development Program of Guangdong Province(Nos.2019B010925001 and 2019B010924001)Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting(No.2017KSYS007).
文摘The origin of the efficiency drop of quantum dot light-emitting diode(QLED)under consecutive voltage sweeps is still a puzzle.In this work,we report the voltage sweep behavior of QLED.We observed the efficiency drop of red QLED with ZnMgO electron transport layer(ETL)under consecutive voltage sweeps.In contrast,the efficiency increases for ZnO ETL device.By analyzing the electrical characteristics of both devices and surface traps of ZnMgO and ZnO nanoparticles,we found the efficiency drop of ZnMgO device is related to the hole leakage mediated by trap state on ZnMgO nanoparticles.For ZnO device,the efficiency raise is due to suppressed electron leakage.The hole leakage also causes rapid lifetime degradation of ZnMgO device.However,the efficiency and lifetime degradation of ZnMgO device can be eliminated with shelf aging.Our work reveals the distinct voltage sweep behavior of QLED based on different ETLs and may help to understand the lifetime degradation mechanism in QLED.