Floating offshore wind turbine platforms typically use stiffened tubular joints at the connections between columns and braces.These joints are prone to fatigue due to complex weld geometries and the additional stress ...Floating offshore wind turbine platforms typically use stiffened tubular joints at the connections between columns and braces.These joints are prone to fatigue due to complex weld geometries and the additional stress concentrations caused by the stiffeners.Existing hot-spot stress approaches may be inadequate for analysing these joints because they do not simultaneously address weld-toe and weld-root failures.To address these limitations,this study evaluates the fatigue strength of stiffened tubular joints using the effective notch strain approach and the structural strain approach.Both methods account for fatigue at the weld toe and weld root and can be applied to both low-cycle fatigue(LCF)and high-cycle fatigue(HCF)regimes.Reanalyzes of a series of fatigue-tested specimens confirm the effectiveness of both approaches.The stiffener-shell fillet weld root is identified as the most critical fatigue location,which is consistent with fractographic observations.Although the brace-to-shell weld root exhibits lower stress levels in finite element(FE)models,weld quality was determined to be a crucial factor in fatigue failure.Furthermore,the results emphasise the importance of material plasticity in the LCF regime and demonstrate that full weld penetration significantly enhances fatigue strength.These findings provide valuable insights for the fatigue design of stiffened tubular joints in floating offshore wind turbine platforms.展开更多
Whether the concept of effective stress and strain in elastic-plastic theory is still valid under the condition of finite deformation was mainly discussed. The uni-axial compression experiments in plane stress and pla...Whether the concept of effective stress and strain in elastic-plastic theory is still valid under the condition of finite deformation was mainly discussed. The uni-axial compression experiments in plane stress and plane strain states were chosen for study. In the two kinds of stress states, the stress-strain curve described by logarithm strain and rotated Kirchhoff stress matches the experiments data better than the curves defined by other stress-strain description.展开更多
Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an...Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.展开更多
Photovoltaic metal halide perovskite solar cells(PSCs) convert light to electricity more efficiently than crystalline silicon cells, and the cost of materials used to make them is lower than that of silicon cells.Conv...Photovoltaic metal halide perovskite solar cells(PSCs) convert light to electricity more efficiently than crystalline silicon cells, and the cost of materials used to make them is lower than that of silicon cells.Conversion efficiency is not a core issue affecting the application of perovskite solar cells in special scenarios.At present, stability is the major technical encounters that hinders its further commercial development. Microstrain in PSCs is currently a significant factor responsible for the device's instability. Strain-induced ion migration is widely believed to accelerate perovskite degradation even when external stimuli are excluded.Undoubtedly, it is imperative to study strain to enhance the stability of PSCs. This paper reviews recent developments to understand strain's origin and effect mechanisms on performance of PSCs, including ion migration,failure behavior, defect formation, and its effect on photoelectric properties, stability, and reliability.Additionally, several well-known strain management strategies are systematically introduced based on the strain effect mechanism and strain engineering on the film, providing more clues for further preparation with increased stability. The manipulation of external physical strain applied from films to entire devices has been extensively studied. Furthermore, recommendations for future research directions and chemical approaches have been provided. It is emphasized that strain engineering plays a crucial role in improving the efficiency and longevity of PSCs. Tensile strain causes rapid degradation, while moderate compressive strain and external strain control could improve properties and stability. Efforts should focus on controlling compressive strain to mitigate residual tensile strain and introducing it in a controlled manner. Future research endeavors may focus on exploring these pathways to improve the efficiency and lifespan of PSCs.展开更多
Rock is exposed to the combined effects of the confining pressure and strain rate during the dynamic excavation process in deeply buried high-stress tunnels.Therefore,a constitutive model that considers both the strai...Rock is exposed to the combined effects of the confining pressure and strain rate during the dynamic excavation process in deeply buried high-stress tunnels.Therefore,a constitutive model that considers both the strain rate and the confining pressure effect plays a crucial role in evaluating the disturbance and stability of deeply buried tunnels.Taking mudstone as an example,a series of tests were performed to reveal the combined effect of the strain rate and confining pressure on the mechanical behavior of soft rock,and a novel statistical damage constitutive model was proposed.The confining pressures of 0 MPa,10 MPa,20 MPa,and 30 MPa and strain rates of 10^(-5)s^(-1),10^(-4)s^(-1),10^(-3)s^(-1),and 10^(-2)s^(-1)were investigated.The results show that the rock strength increases with increasing confining pressure and strain rate,and that the contributions of these two factors can be considered independent of each other.However,an increase in the confining pressure reduces the degree of rock damage and increases the ductility of the sample at failure,whereas the strain rate has the opposite effect.Finally,a full deformation process damage model considering strain rate effect is established based on a modified Hoek‒Brown strength criterion considering the strain rate.The model can capture the nonlinear increase in strength and elastic modulus with increasing confining pressure and strain rate,reproducing the brittle‒ductile transition characteristics and the full deformation process.展开更多
The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and all...The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions.展开更多
Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically ex...Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically excited states,which is crucial for atomically precise strain engineering and practical spintronic applications,remains unexplored.Here,we report the nanoscale strain effects on CDWs and low-energy electronic states in the van der Waals antiferromagnetic metal GdTe_(3),utilizing scanning tunneling microscopy/spectroscopy.Lowtemperature cleavage introduces local strains,resulting in the formation of nanoscale wrinkles on the GdTe_(3)surface.Atomic displacement analysis reveals two distinct types of wrinkles:Wrinkle-I,originating from unidirectional strain,and Wrinkle-II,dominated by shear strain.In Wrinkle-I,the tensile strain enhances the CDW gap,while the compressive strain induces a single low-energy magnetic state.Wrinkle-II switches the orientation of CDW,leading to the formation of an associated CDW domain wall.In addition,three low-energy magnetic states that exhibit magnetic field-dependent shifts and intensity variations emerge within the CDW gap around Wrinkle-II,indicative of a strain-tuned coupling between CDW order and localized 4f-electron magnetism.These findings establish nanoscale strain as a powerful tuning knob for manipulating intertwined electronic and magnetic excitations in correlated magnetic systems.展开更多
The tensile properties and deformation mechanisms of the reduced activation ferritic/martensitic steel—China low activation martensitic(CLAM)steel are determined from tests carried out over a wider range of strain ra...The tensile properties and deformation mechanisms of the reduced activation ferritic/martensitic steel—China low activation martensitic(CLAM)steel are determined from tests carried out over a wider range of strain rate and temperature.During high-temperature deformation,the plastic deformation modes involve dynamic recrystallization(DRX)and dynamic recovery(DRV)processes,which govern the mechanical behaviors of CLAM steel under different loading conditions.This work systematically explored the effects of increasing strain rates and temperatures,finding that the microstructure evolution process is facilitated by nano-sized M_(23)C_(6)precipitates and the grain boundaries of the initial microstructure.Under quasi-static loading conditions,DRX grains preferentially nucleate around M_(23)C_(6) precipitates,and the dominant deformation mechanism is DRX.However,under dynamic loading conditions,the number of DRX grains decreases significantly,and the dominant deformation mechanism converts to DRV.It was concluded that the coupling effects of strain rates and temperatures strongly influence DRX and DRV processes,which ultimately determine the mechanical properties and microstructure evolution.Moreover,dynamic deformation at elevated temperatures achieves much finer grain sizes,offering a novel method for grain refinement through dynamic straining processes.展开更多
The plastic flow behaviors of AA6061-T4 sheets at different temperatures(21-300°C)and strain rates(0.002-4 s^(-1))were studied.Significant nonlinear effects of temperature and strain rate on flow behaviors were r...The plastic flow behaviors of AA6061-T4 sheets at different temperatures(21-300°C)and strain rates(0.002-4 s^(-1))were studied.Significant nonlinear effects of temperature and strain rate on flow behaviors were revealed,as well as underlying micromechanical factors.Phenomenology and machine learning-based constitutive models were developed.Both models were formulated in the framework of a temperature-dependent linear combination regulated by a transition function to capture the evolution of strain-hardening behavior with increasing temperature.Novel mathematical functions for describing temperature and strain rate sensitivities were formulated for the phenomenological constitutive model.The threshold temperature related to microstructure evolution was considered in the modeling.A data-enrichment strategy based on extrapolating experimental data via classical strain hardening laws was adopted to improve neural network training.An efficient inverse identification strategy,focusing solely on the transition function,was proposed to enhance the prediction accuracy of post-necking deformation by both constitutive models.展开更多
The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main r...The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main results from an experimental program to assess these effects for commercial Mg alloy extrusions(AM30 and AZ31),sheet(AZ31),and high pressure die castings(HPDC,AM50 and AM60).Uniaxial tensile and compressive tests were performed over a wide range of strain rate and temperature(i.e.0.00075–2800 s^(−1) and 100℃ to−150℃)using conventional servo-hydraulic and high-strain-rate universal test machines and a split-Hopkinson-bar(SHB)apparatus.In primarily-slip-dominant deformation,the true stress–strain curves showed approximate power-law behavior,and the effects of strain rate and temperature on yield strength could be approximately described by constitutive equations linearly dependent on the rate parameter,Tln(5.3×10^(7)/ɛ˙)where T is test temperature in Kelvin andɛ˙is strain rate in s^(−1).In primarily-twin-dominant deformation,the effects of strain rate and temperature on yield and initial flow stress were negligible or small from quasi-static to 2800 s^(−1) owing to the athermal characteristics of mechanical twinning;the effects may become more pronounced with exhaustion of twinning and increasing proportion of slip.展开更多
Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Here...Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1)at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1)and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst.展开更多
The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct ...The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored.The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.展开更多
In this study,to confirm the effect of confining pressure on dynamic mechanical behavior and failure modes of concrete,a split Hopkinson pressure bar dynamic loading device was utilized to perform dynamic compressive ...In this study,to confirm the effect of confining pressure on dynamic mechanical behavior and failure modes of concrete,a split Hopkinson pressure bar dynamic loading device was utilized to perform dynamic compressive experiments under confined and unconfined conditions.The confining pressure was achieved by applying a lateral metal sleeve on the testing specimen which was loaded in the axial direction.The experimental results prove that dynamic peak axial stress,dynamic peak lateral stress,and peak axial strain of concrete are strongly sensitive to the strain rate under confined conditions.Moreover,the failure patterns are significantly affected by the stress-loading rate and confining pressure.Concrete shows stronger strain rate effects under an unconfined condition than that under a confined condition.More cracks are created in concrete subjected to uniaxial dynamic compression at a higher strain rate,which can be explained by a thermal-activated mechanism.By contrast,crack generation is prevented by confinement.Fitting formulas of the dynamic peak stress and dynamic peak axial strain are established by considering strain rate effects(50–250 s-1)as well as the dynamic confining increase factor(DIFc).展开更多
In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume...In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.展开更多
This study aims to discover the stress-state dependence of the dynamic strain aging(DSA)effect on the deformation and fracture behavior of high-strength dual-phase(DP)steel at different deformation temperatures(25-400...This study aims to discover the stress-state dependence of the dynamic strain aging(DSA)effect on the deformation and fracture behavior of high-strength dual-phase(DP)steel at different deformation temperatures(25-400°C)and reveal the damage mechanisms under these various configurations.To achieve different stress states,predesigned specimens with different geometric features were used.Scanning electron microscopy was applied to analyze the fracture modes(e.g.,dimple or shear mode)and underlying damage mechanism of the investigated material.DSA is present in this DP steel,showing the Portevin-Le Chatelier(PLC)effect with serrated flow behavior,thermal hardening,and blue brittleness phenomena.Results show that the stress state contributes distinctly to the DSA effect in terms of the magnitude of thermal hardening and the pattern of blue brittleness.Either low stress triaxiality or Lode angle parameter promotes DSA-induced blue brittleness.Accordingly,the damage mechanisms also show dependence on the stress states in conjunction with the DSA effect.展开更多
To study the dynamic properties of the concrete subjected to impulsive loading, stress-time curves of concrete in different velocities were measured using split Hopkinson pressure bar (SHPB).Effects of temperature and...To study the dynamic properties of the concrete subjected to impulsive loading, stress-time curves of concrete in different velocities were measured using split Hopkinson pressure bar (SHPB).Effects of temperature and strain rate on the dynamic yield strength and constitutive relation of the con-crete were analyzed. The dynamic mechanical properties of the reinforced concrete are subjected to high strain rates when it is at a relatively low temperature. But with temperature increasing, the temperature softening effect makes the strength of the concrete weaken and the impact toughness of the concrete is saliently relative to strain rate effect. So, strain rate effect, strain hardening and temperature softening work together on the dynamic mechanical capability of concrete and the relation between them is relatively complex.展开更多
A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e....A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e.a separation law and an integration law are used respectively.As for the material with the separation law hardening,the angular distributions of stresses are consistent with the HRR field,which differs from the stress results;the angular distributions of couple stresses are the same as the couple stress results.For the material with the integration law hardening,the stress field and the couple stress field can not exist simultaneously,which is the same as the conclusion,but for the stress dominated field,the an- gular distributions of stresses are consistent with the HRR field;for the couple stress dominated field,the an- gular distributions of couple stresses are consistent with those in Ref.However,the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only,while the crack tip field of mode 1 is dominated by the tension gradient,which will be shown in another paper.展开更多
In order to realize the sulfur and water resistance and facilitate the CO oxidation reactions,the effects of strain on the adsorption of CO,O_(2),SO_(2)and H_(2)O molecules on Ni single-atom-catalyst supported by sing...In order to realize the sulfur and water resistance and facilitate the CO oxidation reactions,the effects of strain on the adsorption of CO,O_(2),SO_(2)and H_(2)O molecules on Ni single-atom-catalyst supported by single-carbon-vacancy graphene(Ni-SG) have been studied based on first principles calculations.It shows that the compressive strain increases the adsorption energies of all above mentioned molecules on Ni-SG,where SO_(2)is adsorbed more strongly on Ni-SG than CO.However,in the presence of tensile strain,the adsorption energies decreases significantly when the molecules(O_(2)and SO_(2)) obtain electrons from NiSG,while the adsorption energies just slightly decrease when the molecules(CO and H_(2)O) lose electrons to Ni-SG,which finally achieves the preferential adsorption of CO and O_(2)molecules on Ni-SG by tensile strain.In addition,with tensile strain increasing to 10%,the rate-limited energy barrier along Eley-Rideal(ER) path monotonically increases from 0.77 eV to 0.98 eV,while the rate-limited energy barrier along Langmuir-Hinshelwood(LH) path monotonically decreases from 0.54 eV to 0.44 eV,indicating that the tensile strain can facilitate the LH mechanism while imped the ER mechanism on Ni-SG.The Hirshfeld charge and orbital levels of O_(2)and CO molecules are modulated by the tensile strain,which plays an important role for the decreasing of energy barriers for CO oxidation.Overall,the tensile strain can enhance the sulfur and water resistance of Ni-SG,as well as boost the CO oxidation reactions.展开更多
Electrochemical carbon dioxide reduction meditated by metallic catalysts suffers from restricted selectivity and competition from hydrogen evolution, which sensitively depends on ambiguous contributions of alloying an...Electrochemical carbon dioxide reduction meditated by metallic catalysts suffers from restricted selectivity and competition from hydrogen evolution, which sensitively depends on ambiguous contributions of alloying and strain state in bimetallic catalysts. Herein, nanoporous Au-Sn(NPAS) containing trace tin solute in Au lattices is delicately designed to convince real strain effect, while eliminating other undesirable factors, such as alloying, crystal facets and surface composition. Compared with nanoporous gold(NPG), the NPAS with a solute strain of ~2.2% enables more efficient CO2-to-CO conversion, with an efficiency as high as 92% at-0.85 V versus reversible hydrogen electrode(vs. RHE), and the high activity can retain for more than 8 h. The combination of HRTEM and surface valence band photoemission spectra reveals that the tensile strain on the surface of 3 D nanoporous structure promotes the catalytic activity by shifting up the d-band center and strengthening the adsorption of key intermediate *COOH. A small amount of Sn solute in the nanoporous alloy can prevent ligament coarsening effectively and improve the electrochemical stability.展开更多
Manganin piezoresistive gauges have been extensively used in dynamic stress measurement for decades.It is noted,however,that when used to measure transverse stresses,considerable strain effect is caused as the consequ...Manganin piezoresistive gauges have been extensively used in dynamic stress measurement for decades.It is noted,however,that when used to measure transverse stresses,considerable strain effect is caused as the consequence of change of electrical resistance resulted from bending of wires in the longitudinal-strain-experiencing sensing element of the gauge,a phenomenon discussed in this paper theoretically as well as experimentally.This effect yields unwanted signals to blend with output piezoresistive signals and is not negligible,hence decreases measurement accuracy sizably if not properly handled.To overcome this drawback,a new type of manganin transverse piezoresistive gauge has been developed by authors of this paper,which can reduce the resistance increment to acceptable low level so as to effectively bring the adverse effect under control.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52101350).
文摘Floating offshore wind turbine platforms typically use stiffened tubular joints at the connections between columns and braces.These joints are prone to fatigue due to complex weld geometries and the additional stress concentrations caused by the stiffeners.Existing hot-spot stress approaches may be inadequate for analysing these joints because they do not simultaneously address weld-toe and weld-root failures.To address these limitations,this study evaluates the fatigue strength of stiffened tubular joints using the effective notch strain approach and the structural strain approach.Both methods account for fatigue at the weld toe and weld root and can be applied to both low-cycle fatigue(LCF)and high-cycle fatigue(HCF)regimes.Reanalyzes of a series of fatigue-tested specimens confirm the effectiveness of both approaches.The stiffener-shell fillet weld root is identified as the most critical fatigue location,which is consistent with fractographic observations.Although the brace-to-shell weld root exhibits lower stress levels in finite element(FE)models,weld quality was determined to be a crucial factor in fatigue failure.Furthermore,the results emphasise the importance of material plasticity in the LCF regime and demonstrate that full weld penetration significantly enhances fatigue strength.These findings provide valuable insights for the fatigue design of stiffened tubular joints in floating offshore wind turbine platforms.
文摘Whether the concept of effective stress and strain in elastic-plastic theory is still valid under the condition of finite deformation was mainly discussed. The uni-axial compression experiments in plane stress and plane strain states were chosen for study. In the two kinds of stress states, the stress-strain curve described by logarithm strain and rotated Kirchhoff stress matches the experiments data better than the curves defined by other stress-strain description.
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(No.52279097,No.51779264)Blue and Green Project of Jiangsu Province.
文摘Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.
基金Project of National Natural Science Foundation (52262035)Key Research Program of Education Department of Gansu Province (GSSYLXM-03)+2 种基金Hong Liu excellent youth project of Lanzhou University of technologyMajor Science and Technology Project of Gansu Province(22ZD6GA008)Jin chang Technology Program(2022GY003)。
文摘Photovoltaic metal halide perovskite solar cells(PSCs) convert light to electricity more efficiently than crystalline silicon cells, and the cost of materials used to make them is lower than that of silicon cells.Conversion efficiency is not a core issue affecting the application of perovskite solar cells in special scenarios.At present, stability is the major technical encounters that hinders its further commercial development. Microstrain in PSCs is currently a significant factor responsible for the device's instability. Strain-induced ion migration is widely believed to accelerate perovskite degradation even when external stimuli are excluded.Undoubtedly, it is imperative to study strain to enhance the stability of PSCs. This paper reviews recent developments to understand strain's origin and effect mechanisms on performance of PSCs, including ion migration,failure behavior, defect formation, and its effect on photoelectric properties, stability, and reliability.Additionally, several well-known strain management strategies are systematically introduced based on the strain effect mechanism and strain engineering on the film, providing more clues for further preparation with increased stability. The manipulation of external physical strain applied from films to entire devices has been extensively studied. Furthermore, recommendations for future research directions and chemical approaches have been provided. It is emphasized that strain engineering plays a crucial role in improving the efficiency and longevity of PSCs. Tensile strain causes rapid degradation, while moderate compressive strain and external strain control could improve properties and stability. Efforts should focus on controlling compressive strain to mitigate residual tensile strain and introducing it in a controlled manner. Future research endeavors may focus on exploring these pathways to improve the efficiency and lifespan of PSCs.
基金financed by the Key Technology R&D Plan of Yunnan Provincial Department of Science and Technology(Grant No.202303AA080003)the Shanghai Rising-Star Program(Grant No.23QB1404800).
文摘Rock is exposed to the combined effects of the confining pressure and strain rate during the dynamic excavation process in deeply buried high-stress tunnels.Therefore,a constitutive model that considers both the strain rate and the confining pressure effect plays a crucial role in evaluating the disturbance and stability of deeply buried tunnels.Taking mudstone as an example,a series of tests were performed to reveal the combined effect of the strain rate and confining pressure on the mechanical behavior of soft rock,and a novel statistical damage constitutive model was proposed.The confining pressures of 0 MPa,10 MPa,20 MPa,and 30 MPa and strain rates of 10^(-5)s^(-1),10^(-4)s^(-1),10^(-3)s^(-1),and 10^(-2)s^(-1)were investigated.The results show that the rock strength increases with increasing confining pressure and strain rate,and that the contributions of these two factors can be considered independent of each other.However,an increase in the confining pressure reduces the degree of rock damage and increases the ductility of the sample at failure,whereas the strain rate has the opposite effect.Finally,a full deformation process damage model considering strain rate effect is established based on a modified Hoek‒Brown strength criterion considering the strain rate.The model can capture the nonlinear increase in strength and elastic modulus with increasing confining pressure and strain rate,reproducing the brittle‒ductile transition characteristics and the full deformation process.
基金Project supported by the National Natural Science Foundation of China(Nos.11922206,11702089,12272132)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20240388)。
文摘The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions.
基金supported by the National Natural Science Foundation of China(Grant No.62488201)the National Key Research and Development Project of China(Grant No.2022YFA1204100)+1 种基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700).
文摘Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically excited states,which is crucial for atomically precise strain engineering and practical spintronic applications,remains unexplored.Here,we report the nanoscale strain effects on CDWs and low-energy electronic states in the van der Waals antiferromagnetic metal GdTe_(3),utilizing scanning tunneling microscopy/spectroscopy.Lowtemperature cleavage introduces local strains,resulting in the formation of nanoscale wrinkles on the GdTe_(3)surface.Atomic displacement analysis reveals two distinct types of wrinkles:Wrinkle-I,originating from unidirectional strain,and Wrinkle-II,dominated by shear strain.In Wrinkle-I,the tensile strain enhances the CDW gap,while the compressive strain induces a single low-energy magnetic state.Wrinkle-II switches the orientation of CDW,leading to the formation of an associated CDW domain wall.In addition,three low-energy magnetic states that exhibit magnetic field-dependent shifts and intensity variations emerge within the CDW gap around Wrinkle-II,indicative of a strain-tuned coupling between CDW order and localized 4f-electron magnetism.These findings establish nanoscale strain as a powerful tuning knob for manipulating intertwined electronic and magnetic excitations in correlated magnetic systems.
基金financially supported by National Natural Science Foundation of China(Grant Nos.12025205 and 12141203)Natural Science Basic Research Program of Shaanxi(Program No.S2023-JC-QN-0614)Fund for Basic Research(No.2021T019)from the Analytical&Testing Center of Northwestern Polytechnical University.
文摘The tensile properties and deformation mechanisms of the reduced activation ferritic/martensitic steel—China low activation martensitic(CLAM)steel are determined from tests carried out over a wider range of strain rate and temperature.During high-temperature deformation,the plastic deformation modes involve dynamic recrystallization(DRX)and dynamic recovery(DRV)processes,which govern the mechanical behaviors of CLAM steel under different loading conditions.This work systematically explored the effects of increasing strain rates and temperatures,finding that the microstructure evolution process is facilitated by nano-sized M_(23)C_(6)precipitates and the grain boundaries of the initial microstructure.Under quasi-static loading conditions,DRX grains preferentially nucleate around M_(23)C_(6) precipitates,and the dominant deformation mechanism is DRX.However,under dynamic loading conditions,the number of DRX grains decreases significantly,and the dominant deformation mechanism converts to DRV.It was concluded that the coupling effects of strain rates and temperatures strongly influence DRX and DRV processes,which ultimately determine the mechanical properties and microstructure evolution.Moreover,dynamic deformation at elevated temperatures achieves much finer grain sizes,offering a novel method for grain refinement through dynamic straining processes.
文摘The plastic flow behaviors of AA6061-T4 sheets at different temperatures(21-300°C)and strain rates(0.002-4 s^(-1))were studied.Significant nonlinear effects of temperature and strain rate on flow behaviors were revealed,as well as underlying micromechanical factors.Phenomenology and machine learning-based constitutive models were developed.Both models were formulated in the framework of a temperature-dependent linear combination regulated by a transition function to capture the evolution of strain-hardening behavior with increasing temperature.Novel mathematical functions for describing temperature and strain rate sensitivities were formulated for the phenomenological constitutive model.The threshold temperature related to microstructure evolution was considered in the modeling.A data-enrichment strategy based on extrapolating experimental data via classical strain hardening laws was adopted to improve neural network training.An efficient inverse identification strategy,focusing solely on the transition function,was proposed to enhance the prediction accuracy of post-necking deformation by both constitutive models.
基金This work is part of the crashworthiness R&D task of an on-going Canada-China-US Magnesium Front-End Research and Development(MFERD)project.The Canadian task is funded by the CCT&I and ASM-NGV programs,Govemment of Canada.
文摘The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main results from an experimental program to assess these effects for commercial Mg alloy extrusions(AM30 and AZ31),sheet(AZ31),and high pressure die castings(HPDC,AM50 and AM60).Uniaxial tensile and compressive tests were performed over a wide range of strain rate and temperature(i.e.0.00075–2800 s^(−1) and 100℃ to−150℃)using conventional servo-hydraulic and high-strain-rate universal test machines and a split-Hopkinson-bar(SHB)apparatus.In primarily-slip-dominant deformation,the true stress–strain curves showed approximate power-law behavior,and the effects of strain rate and temperature on yield strength could be approximately described by constitutive equations linearly dependent on the rate parameter,Tln(5.3×10^(7)/ɛ˙)where T is test temperature in Kelvin andɛ˙is strain rate in s^(−1).In primarily-twin-dominant deformation,the effects of strain rate and temperature on yield and initial flow stress were negligible or small from quasi-static to 2800 s^(−1) owing to the athermal characteristics of mechanical twinning;the effects may become more pronounced with exhaustion of twinning and increasing proportion of slip.
基金the financial support provided by the National Natural Science Foundation of China(22075290,21972068,52164028)the Beijing Natural Science Foundation(Z200012)+3 种基金the State Key Laboratory of Multiphase Complex Systemsthe Institute of Process Engineeringthe Chinese Academy of Sciences(MPCS-2021-A-05)the Nanjing IPE Institute of Green Manufacturing Industry(E0010725).
文摘Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1)at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1)and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst.
基金supported by the National Natural Science Foundation of China (Grants 11372308, 11372307)the Fundamental Research Funds for the Central Universities (Grant WK2480000001)
文摘The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored.The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.
基金supported by the National Natural Science Foundation of China(Nos.52027814 and 51839009)。
文摘In this study,to confirm the effect of confining pressure on dynamic mechanical behavior and failure modes of concrete,a split Hopkinson pressure bar dynamic loading device was utilized to perform dynamic compressive experiments under confined and unconfined conditions.The confining pressure was achieved by applying a lateral metal sleeve on the testing specimen which was loaded in the axial direction.The experimental results prove that dynamic peak axial stress,dynamic peak lateral stress,and peak axial strain of concrete are strongly sensitive to the strain rate under confined conditions.Moreover,the failure patterns are significantly affected by the stress-loading rate and confining pressure.Concrete shows stronger strain rate effects under an unconfined condition than that under a confined condition.More cracks are created in concrete subjected to uniaxial dynamic compression at a higher strain rate,which can be explained by a thermal-activated mechanism.By contrast,crack generation is prevented by confinement.Fitting formulas of the dynamic peak stress and dynamic peak axial strain are established by considering strain rate effects(50–250 s-1)as well as the dynamic confining increase factor(DIFc).
基金Supported by Australia Research Council(No.DP0451966)
文摘In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.
基金The authors gratefully acknowledge the valuable comments by Prof.Sebastian Münstermann from Steel Institute(IEHK),RWTH Aachen University,Germany.The work has been supported by the European Commission Research Fund for Coal and Steel(No.709711).Wenqi Liu is grateful to Shujing Li and Guangming Zeng from IEHK for data processing.
文摘This study aims to discover the stress-state dependence of the dynamic strain aging(DSA)effect on the deformation and fracture behavior of high-strength dual-phase(DP)steel at different deformation temperatures(25-400°C)and reveal the damage mechanisms under these various configurations.To achieve different stress states,predesigned specimens with different geometric features were used.Scanning electron microscopy was applied to analyze the fracture modes(e.g.,dimple or shear mode)and underlying damage mechanism of the investigated material.DSA is present in this DP steel,showing the Portevin-Le Chatelier(PLC)effect with serrated flow behavior,thermal hardening,and blue brittleness phenomena.Results show that the stress state contributes distinctly to the DSA effect in terms of the magnitude of thermal hardening and the pattern of blue brittleness.Either low stress triaxiality or Lode angle parameter promotes DSA-induced blue brittleness.Accordingly,the damage mechanisms also show dependence on the stress states in conjunction with the DSA effect.
基金Supported by National Natural Science Foundation of China(No.10602048)
文摘To study the dynamic properties of the concrete subjected to impulsive loading, stress-time curves of concrete in different velocities were measured using split Hopkinson pressure bar (SHPB).Effects of temperature and strain rate on the dynamic yield strength and constitutive relation of the con-crete were analyzed. The dynamic mechanical properties of the reinforced concrete are subjected to high strain rates when it is at a relatively low temperature. But with temperature increasing, the temperature softening effect makes the strength of the concrete weaken and the impact toughness of the concrete is saliently relative to strain rate effect. So, strain rate effect, strain hardening and temperature softening work together on the dynamic mechanical capability of concrete and the relation between them is relatively complex.
基金the National Natural Science Foundation of China (No.19704100)Science Foundation of Chinese Academy of Sciences (Project KJ951-1-20)CASK.C.Wong Post-doctoral Research Award Fund and the Post Doctoral Science Fund of China.
文摘A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e.a separation law and an integration law are used respectively.As for the material with the separation law hardening,the angular distributions of stresses are consistent with the HRR field,which differs from the stress results;the angular distributions of couple stresses are the same as the couple stress results.For the material with the integration law hardening,the stress field and the couple stress field can not exist simultaneously,which is the same as the conclusion,but for the stress dominated field,the an- gular distributions of stresses are consistent with the HRR field;for the couple stress dominated field,the an- gular distributions of couple stresses are consistent with those in Ref.However,the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only,while the crack tip field of mode 1 is dominated by the tension gradient,which will be shown in another paper.
基金support by the Fundamental Research Funds for the Central Universities (No. B210202099)National Natural Science Foundation of China (Nos. 21703052, 22176041, 21777033)Science and Technology Planning Project of Guangdong Province (No. 2017B020216003)。
文摘In order to realize the sulfur and water resistance and facilitate the CO oxidation reactions,the effects of strain on the adsorption of CO,O_(2),SO_(2)and H_(2)O molecules on Ni single-atom-catalyst supported by single-carbon-vacancy graphene(Ni-SG) have been studied based on first principles calculations.It shows that the compressive strain increases the adsorption energies of all above mentioned molecules on Ni-SG,where SO_(2)is adsorbed more strongly on Ni-SG than CO.However,in the presence of tensile strain,the adsorption energies decreases significantly when the molecules(O_(2)and SO_(2)) obtain electrons from NiSG,while the adsorption energies just slightly decrease when the molecules(CO and H_(2)O) lose electrons to Ni-SG,which finally achieves the preferential adsorption of CO and O_(2)molecules on Ni-SG by tensile strain.In addition,with tensile strain increasing to 10%,the rate-limited energy barrier along Eley-Rideal(ER) path monotonically increases from 0.77 eV to 0.98 eV,while the rate-limited energy barrier along Langmuir-Hinshelwood(LH) path monotonically decreases from 0.54 eV to 0.44 eV,indicating that the tensile strain can facilitate the LH mechanism while imped the ER mechanism on Ni-SG.The Hirshfeld charge and orbital levels of O_(2)and CO molecules are modulated by the tensile strain,which plays an important role for the decreasing of energy barriers for CO oxidation.Overall,the tensile strain can enhance the sulfur and water resistance of Ni-SG,as well as boost the CO oxidation reactions.
基金financial support from the National Natural Science Foundation of China(Nos.51771078,91545131 and 51371084)China Postdoctoral Science Foundation(No.2017M612455)。
文摘Electrochemical carbon dioxide reduction meditated by metallic catalysts suffers from restricted selectivity and competition from hydrogen evolution, which sensitively depends on ambiguous contributions of alloying and strain state in bimetallic catalysts. Herein, nanoporous Au-Sn(NPAS) containing trace tin solute in Au lattices is delicately designed to convince real strain effect, while eliminating other undesirable factors, such as alloying, crystal facets and surface composition. Compared with nanoporous gold(NPG), the NPAS with a solute strain of ~2.2% enables more efficient CO2-to-CO conversion, with an efficiency as high as 92% at-0.85 V versus reversible hydrogen electrode(vs. RHE), and the high activity can retain for more than 8 h. The combination of HRTEM and surface valence band photoemission spectra reveals that the tensile strain on the surface of 3 D nanoporous structure promotes the catalytic activity by shifting up the d-band center and strengthening the adsorption of key intermediate *COOH. A small amount of Sn solute in the nanoporous alloy can prevent ligament coarsening effectively and improve the electrochemical stability.
基金Sponsored by the National Natural Science of China(10472014)
文摘Manganin piezoresistive gauges have been extensively used in dynamic stress measurement for decades.It is noted,however,that when used to measure transverse stresses,considerable strain effect is caused as the consequence of change of electrical resistance resulted from bending of wires in the longitudinal-strain-experiencing sensing element of the gauge,a phenomenon discussed in this paper theoretically as well as experimentally.This effect yields unwanted signals to blend with output piezoresistive signals and is not negligible,hence decreases measurement accuracy sizably if not properly handled.To overcome this drawback,a new type of manganin transverse piezoresistive gauge has been developed by authors of this paper,which can reduce the resistance increment to acceptable low level so as to effectively bring the adverse effect under control.