The electronic structures, Born effective charges(BECs), and full phonon dispersions of cubic, tetragonal, orthorhombic, and rhombohedral K0.5Na0.5Nb O3 are investigated by the first principles method based on densi...The electronic structures, Born effective charges(BECs), and full phonon dispersions of cubic, tetragonal, orthorhombic, and rhombohedral K0.5Na0.5Nb O3 are investigated by the first principles method based on density functional theory.The hybridized states of Nb 4d and O 2p states are observed in the valence band, showing the formation of a strong Nb–O covalent bond which should be responsible for the displacement of Nb and O atoms. The abnormally large BECs of Nb and O indicate the possibility of phase instability induced by the off-center displacement of Nb and O atoms. The phonon dispersions reveal that the ferroelectric instability of K0.5Na0.5Nb O3 is dominated by Nb and O displacements with significant Na characteristics. In addition to the ferroelectric instability, there is also rotational instability coming from the oxygen octahedra rotation around one axis. Moreover, the Γ phonon properties of orthorhombic KNb O3, Na Nb O3, and K0.5Na0.5Nb O3 are also studied in detail.展开更多
The microscopic effective charges in mirror nuclei 51Mn and 51Fe are investigated with the particle-vibration coupling model based on the self-consistent Skyrme-Hartree-Fock and continuum random-phase-approximation ap...The microscopic effective charges in mirror nuclei 51Mn and 51Fe are investigated with the particle-vibration coupling model based on the self-consistent Skyrme-Hartree-Fock and continuum random-phase-approximation approaches. The isovector parts are predicted to be around 0.15, and the proton effective charges are around 1.25 e, which is less than the empirical value of epff p = 1.5 e. The microscopic effective charges in neutron rich 51Mn are about 10% less than its proton rich mirror. These effective charges are combined with the shell model to calculate the reduced electric quadrupole transition probability B(E2) values in 51Mn and 51Fe. It turns out that the microscopic effective charges have well reproduced the B(E2) values and its ratio in the terminating states.展开更多
There are two different definitions for specifying the mean effective ion charge Zeff in plasmas: a) from the Spizer electrical resistivity of the plasma and b) from bremsstrahlung radiation losses of the plasma. I...There are two different definitions for specifying the mean effective ion charge Zeff in plasmas: a) from the Spizer electrical resistivity of the plasma and b) from bremsstrahlung radiation losses of the plasma. In this paper Zeff in the centre of tokamak ohmic discharges has been determined from information on sawtooth-relaxations of the steady state plasma, based on the analysis for the power balance of the plasma electrons in the plasma centre during the period of recovery after the sawtooth crashes. This method is found to supply reliable results for tokamak parameters. While its application requires some efforts in data analysis, it can provide a reliable determination of Zeff, independent of the information from bremsstrahlung radiation losses of the plasma.展开更多
The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of ...The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.展开更多
This theory proposes an extended model of the electron based on the image of the screened electron in the concept of vacuum polarization of QED. The extended electron consists of a negatively charged core −q0which is ...This theory proposes an extended model of the electron based on the image of the screened electron in the concept of vacuum polarization of QED. The extended electron consists of a negatively charged core −q0which is surrounded by an assembly (an aggregation) of tiny static electric dipoles −q,+q. When subjected to an external field, electromagnetic forces are produced on these point charges to give rise to various properties of the electron. Three major properties of the electron that will be explored in this theory are: 1) the effective electric charge of the electron;2) the mechanism of the spin of the electron;3) the mechanism of radiation of the electron. The investigation of these properties leads to various innovative explanations for the generation of anti-particle, the orbital of the electron, the strong nuclear forces between nucleons … Other topics are also listed in the following content.展开更多
Due to the advantages of low energy consumption and high CO_(2) selectivity, the development of solid amine-based materials has been regarded as a hot research topic in the field of DAC for the past decades.The adsorp...Due to the advantages of low energy consumption and high CO_(2) selectivity, the development of solid amine-based materials has been regarded as a hot research topic in the field of DAC for the past decades.The adsorption capacity and stability over multiple cycles have been the top priorities for evaluation of practical application value. Herein, we synthesized a novel DAC material by loading TEPA onto defect-rich Mg_(0.55)Al-O MMOs with enhanced charge transfer effect. The optimal Mg_(0.55)Al-O-TEPA67% demonstrates the highest CO_(2)uptake of(3.0 mmol g^(-1)) and excellent regenerability, maintaining ~90% of the initial adsorption amount after 80 adsorption/desorption cycles. The in situ DRIFTS experiments suggested the formation of bicarbonate species under wet conditions. DFT calculations indicated that the stronger bonding between Mg_(0.55)Al-O support and solid amine was caused by the abundance of oxygen defects on MMOs confirmed by XPS and ESR, which favors the charge transfer between the support and amine,resulting in intense interaction and excellent regenerability. This work for the first time conducted comprehensive and systematic investigation on the stabilization mechanism for MMOs supported solid amine adsorbents with highest uptake and superior cyclic stability in depth, which is different from the most popular SiO_(2)-support, thus providing facile strategy and comprehensive theoretical mechanism support for future research about DAC materials.展开更多
In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission,...In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.展开更多
Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/...Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/Al2O3(AHA) high-k gate stack structure under in-situ 10 keV x-rays are studied. The C-V characteristics at different radiation doses demonstrate that charge stored in the device continues to be leaked away during the irradiation,thereby inducing the shift of flat band voltage(V(fb)). The dc memory window shows insignificant changes, suggesting the existence of good P/E ability. Furthermore, the physical mechanisms of TID induced radiation damages in AHA-based CTM are analyzed.展开更多
Heavy metal contaminated water sources can cause serious health problems for humans,animals,and plants.Heavy metals can lead to the decrease or loss of liver,kidney,and brain function.Objective:The aim of this researc...Heavy metal contaminated water sources can cause serious health problems for humans,animals,and plants.Heavy metals can lead to the decrease or loss of liver,kidney,and brain function.Objective:The aim of this research is to examine the effect of charge on adsorbents in the removal of metal cations.Study Design&Methods:Standard solutions of Ca,Cu,Pb,and Zn with concentrations of 1,000 ppm were treated with sodium carbonate and sodium phosphate with various charges.Then,the solutions were placed on a shaker for 24 h,centrifuged,and the supernatant was analyzed using ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry).Results:The order of average metal removal by sodium phosphates is:dibasic(99.3%)>monobasic(96.5%)>tribasic(95.4%).The average metal removal by sodium carbonate and bicarbonate is 98.5% and 96.4% respectively.Conclusion:The adsorbent removability depends on the relationship between the charge present on the metal and the charge on the adsorbent.Thus,metal cations in this study with a+2 charge had a greater affinity for the adsorbent with-2 charged ligands,dibasic sodium phosphate and sodium carbonate.展开更多
The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate ...The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate dielectric. The temperature-dependent gate voltage-drain current and room temperature gate capacitance are measured to extract the carrier mobility and to estimate the quantum capacitance of the GFET. The device shows the mobility value of gOO cm^2 /V.s at room temperature and it decreases to 45 cm^2 /V.s for 20 K due to the increase of n0. These results indicate that the phonon scattering is not the dominant process for the unevenness dielectric layer while the coulomb scattering by charged impurities degrades the device characteristically at low temperature.展开更多
In this paper,we introduce a method of quantitatively evaluating and controlling the space charge effect of a lasercooled three-dimensional(3 D) ion system in a linear Paul trap.The relationship among cooling effici...In this paper,we introduce a method of quantitatively evaluating and controlling the space charge effect of a lasercooled three-dimensional(3 D) ion system in a linear Paul trap.The relationship among cooling efficiency,ion quantity,and trapping strength is analyzed quantitatively,and the dynamic space distribution and temporal evolution of the 3 D ion system on a secular motion period time scale in the cooling process are obtained.The ion number influences the eigen-micromotion feature of the ion system.When trapping parameter q is ~ 0.3,relatively ideal cooling efficiency and equilibrium temperature can be obtained.The decrease of axial electrostatic potential is helpful in reducing the micromotion heating effect and the degradation in the total energy.Within a single secular motion period under different cooling conditions,ions transform from the cloud state(each ion disperses throughout the envelope of the ion system) to the liquid state(each ion is concentrated at a specific location in the ion system) and then to the crystal state(each ion is subjected to a fixed motion track).These results are conducive to long-term storage and precise control,motion effect suppression,high-efficiency cooling,and increasing the precision of spectroscopy for a 3 D ion system.展开更多
Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reac...Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reactant(s)in the local reaction zone.Taking H_(2)O_(2)redox reactions at Pt(111)as a model system,we reveal a peculiar surface charge effect using ab initio molecular dynamics simulations of electrified Pt(111)-water interfaces.In this scenario,the negative surface charge on Pt(111)repels the O-O bond of the reactant(H_(2)O_(2))farther away from the electrode surface.This leads to a higher activation barrier for breaking the O-O bond.Incorporating this microscopic mechanism into a microkinetic-double-layer model,we are able to semi-quantitatively interpret the pH-dependent activity of H_(2)O_(2)redox reactions at Pt(111),especially the anomalously suppressed activity of H_(2)O_(2)reduction with decreasing electrode potential.The relevance of the present surface charge effect is also examined in wider scenarios with different electrolyte cations,solution pHs,crystal facets of the catalyst,and model parameters.In contrast with previous mechanisms focusing on how surface charge influences the local reaction condition at a fixed reaction plane,the present work gives an example in which the location of the reaction plane is adjusted by the surface charge.展开更多
Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by th...Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by the Coulomb repulsion and by the effective nuclear charge (Zeff) agrees well with the experimental data. Comparison of Fe K-shell X-ray emission induced by 5 MeV xenon ions with different initial charge states (20+, 22+, 26+, 30+) verifies the applicability of the effective nuclear charge (Zeff) correction for the BEA model. It is found that Zeff correction is reasonable to describe direct ionization induced by xenon ions with no initial M-shell vacancies. However, when the M shell is opened, the Zeff corrected BEA model is unable to explain the inner-shell ionization, and the electron transfer by molecular-orbital promotion should be considered.展开更多
Ultrafine particles(UFPs)are harmful to human beings,and their effective removal from the environment is an urgent necessity.In this study,a dielectric barrier discharge(DBD)reactor packed with porous alumina(PA)balls ...Ultrafine particles(UFPs)are harmful to human beings,and their effective removal from the environment is an urgent necessity.In this study,a dielectric barrier discharge(DBD)reactor packed with porous alumina(PA)balls driven by a pulse power supply was developed to remove the UFPs(ranging from 20 to 100 nm)from the exhaust gases of kerosene combustion.Five types of DBD reactors were established to evaluate the effect of plasma catalysis on the removal efficiency of UFPs.The influences of gasflow rate,peak voltage and pulse frequency of different reactors on UFPs removal were investigated.It was found that a high total UFP removal of 91.4%can be achieved in the DBD reactor entirely packed with PA balls.The results can be attributed to the enhanced charge effect of the UFPs with PA balls in the discharge space.The UFP removals by diffusion deposition and electrostatic attraction were further calculated,indicating that particle charging is vital to achieve high removal efficiency for UFPs.展开更多
The "cascade static lens (CSL) gauge" has a high sensitivity(S) because the emitted electrons repeat the go and back oscillation before they are received by the electrodes. (S=18.6 Pa<sup>-1</su...The "cascade static lens (CSL) gauge" has a high sensitivity(S) because the emitted electrons repeat the go and back oscillation before they are received by the electrodes. (S=18.6 Pa<sup>-1</sup> (2480 Torr<sup>-1</sup> in a展开更多
The recombination of charge carriers arriving from the random charge movement in semiconductor pho-tocatalysts greatly limits the practical application of solar-driven H_(2)evolution.The design of photo-catalytic syst...The recombination of charge carriers arriving from the random charge movement in semiconductor pho-tocatalysts greatly limits the practical application of solar-driven H_(2)evolution.The design of photo-catalytic systems with spatially oriented charge-transfer is a promising route to achieve high charge-separation efficiency for photocatalysts.Herein,novel sea-urchin-like Re S_(2)nanosheet/TiO_(2)nanoparticle heterojunctions(SURTHs)are constructed.The unique sea-urchin-like structure endows the ReS_(2)cocat-alyst with an unusual charge edge-collection effect,which leads to a significant acceleration of charge separation and transfer,as evidenced by the well-designed selective photodeposition of Pt quantum dots in SURTHs.The markedly improved charge transfer capacity contributes to a high photocatalytic H_(2)evo-lution rate of 3.71 mmol h^(−1)g^(−1)for SURTHs(an apparent quantum efficiency(AQE)of 16.09%),up to 231.9 times by contrast with that of P25 TiO_(2).This work would provide a new platform for designing the high-efficiency cocatalyst/photocatalyst system with excellent charge transfer capacity.展开更多
The article theoretically studied the charge-exchange effects on space charge limitedelectron and ion current densities of non-relativistic one-dimensional slab ion diode, and comparedwith those of without charge exch...The article theoretically studied the charge-exchange effects on space charge limitedelectron and ion current densities of non-relativistic one-dimensional slab ion diode, and comparedwith those of without charge exchange.展开更多
The charge transport behavior of barium fluoride nanocrystals is investigated by in situ impedance measurement up to 35 GPa. It is found that the parameters change discontinuously at about 6.9 GPa, corresponding to th...The charge transport behavior of barium fluoride nanocrystals is investigated by in situ impedance measurement up to 35 GPa. It is found that the parameters change discontinuously at about 6.9 GPa, corresponding to the phase transition of BaF2 nanocrystals under high pressure. The charge carriers in BaF2 nanocrystals include both Fions and electrons. Pressure makes the electronic transport more difficult. The defects at grains dominate the electronic transport process. Pressure could make the charge-discharge processes in the Fm3m phase more difficult.展开更多
Electric fields induced by ring and pin electrodes in electrostatic charged powder sprayingtechnique are analysed. The fundamental formulae to deseribe these fields have been built up. Theseformulae could be used to d...Electric fields induced by ring and pin electrodes in electrostatic charged powder sprayingtechnique are analysed. The fundamental formulae to deseribe these fields have been built up. Theseformulae could be used to design electrostatic charged podwer spraying system. The chargingeffectiveness of ring and pin electrode is experimentally investigated and compared each other. Theperformance of ring electrode is better than that of pin electrode.展开更多
The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH g...The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH groups in PAA leads to the formation of intramolecular and intermolecular hydrogen bonds,greatly weakening the bonding force of the binder to SiO surface.However,strengthening the binder-material interaction from the perspective of binder molecular regulation poses a significant challenge.Herein,a modified PAA-Li_(x)(0.25≤x≤1)binder with prominent mechanical properties and adhesion strength is specifically synthesized for SiO anodes by quantitatively substituting the carboxylic hydrogen with lithium.The appropriate lithium substitution(x=0.25)not only effectively increases the number of hydrogen bonds between the PAA binder and SiO surface owing to charge repulsion effect between ions,but also guarantees moderate entanglement between PAA-Li_x molecular chains through the ion-dipole interaction.As such,the PAA-Li_(0.25)/SiO electrode exhibits exceptional mechanical properties and the lowest volume change,as well as the optimum cycling(1237.3 mA h g^(-1)after 100cycles at 0.1 C)and rate performance(1000.6 mA h g^(-1)at 1 C),significantly outperforming the electrode using pristine PAA binder.This work paves the way for quantitative regulation of binders at the molecular level.展开更多
基金Project supported by the Jiangxi Provincial Natural Science Foundation,China(Grant No.20122BAB216007)the Foundation of Jiangxi Provincial Educational Committee,China(Grant No.GJJ14648)
文摘The electronic structures, Born effective charges(BECs), and full phonon dispersions of cubic, tetragonal, orthorhombic, and rhombohedral K0.5Na0.5Nb O3 are investigated by the first principles method based on density functional theory.The hybridized states of Nb 4d and O 2p states are observed in the valence band, showing the formation of a strong Nb–O covalent bond which should be responsible for the displacement of Nb and O atoms. The abnormally large BECs of Nb and O indicate the possibility of phase instability induced by the off-center displacement of Nb and O atoms. The phonon dispersions reveal that the ferroelectric instability of K0.5Na0.5Nb O3 is dominated by Nb and O displacements with significant Na characteristics. In addition to the ferroelectric instability, there is also rotational instability coming from the oxygen octahedra rotation around one axis. Moreover, the Γ phonon properties of orthorhombic KNb O3, Na Nb O3, and K0.5Na0.5Nb O3 are also studied in detail.
基金supported by National Natural Science Foundation of China(Nos.11075217,11047142)
文摘The microscopic effective charges in mirror nuclei 51Mn and 51Fe are investigated with the particle-vibration coupling model based on the self-consistent Skyrme-Hartree-Fock and continuum random-phase-approximation approaches. The isovector parts are predicted to be around 0.15, and the proton effective charges are around 1.25 e, which is less than the empirical value of epff p = 1.5 e. The microscopic effective charges in neutron rich 51Mn are about 10% less than its proton rich mirror. These effective charges are combined with the shell model to calculate the reduced electric quadrupole transition probability B(E2) values in 51Mn and 51Fe. It turns out that the microscopic effective charges have well reproduced the B(E2) values and its ratio in the terminating states.
基金Project supported by the Nuclear Science Foundation (Grant No1997517).
文摘There are two different definitions for specifying the mean effective ion charge Zeff in plasmas: a) from the Spizer electrical resistivity of the plasma and b) from bremsstrahlung radiation losses of the plasma. In this paper Zeff in the centre of tokamak ohmic discharges has been determined from information on sawtooth-relaxations of the steady state plasma, based on the analysis for the power balance of the plasma electrons in the plasma centre during the period of recovery after the sawtooth crashes. This method is found to supply reliable results for tokamak parameters. While its application requires some efforts in data analysis, it can provide a reliable determination of Zeff, independent of the information from bremsstrahlung radiation losses of the plasma.
文摘The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.
文摘This theory proposes an extended model of the electron based on the image of the screened electron in the concept of vacuum polarization of QED. The extended electron consists of a negatively charged core −q0which is surrounded by an assembly (an aggregation) of tiny static electric dipoles −q,+q. When subjected to an external field, electromagnetic forces are produced on these point charges to give rise to various properties of the electron. Three major properties of the electron that will be explored in this theory are: 1) the effective electric charge of the electron;2) the mechanism of the spin of the electron;3) the mechanism of radiation of the electron. The investigation of these properties leads to various innovative explanations for the generation of anti-particle, the orbital of the electron, the strong nuclear forces between nucleons … Other topics are also listed in the following content.
基金supported by the Fundamental Research Funds for the Central Universities (2019JQ03015)the National Natural Science Foundation of China (42075169, U1810209)the Beijing Municipal Education Commission through the Innovative Transdisciplinary Program “Ecological Restoration Engineering”。
文摘Due to the advantages of low energy consumption and high CO_(2) selectivity, the development of solid amine-based materials has been regarded as a hot research topic in the field of DAC for the past decades.The adsorption capacity and stability over multiple cycles have been the top priorities for evaluation of practical application value. Herein, we synthesized a novel DAC material by loading TEPA onto defect-rich Mg_(0.55)Al-O MMOs with enhanced charge transfer effect. The optimal Mg_(0.55)Al-O-TEPA67% demonstrates the highest CO_(2)uptake of(3.0 mmol g^(-1)) and excellent regenerability, maintaining ~90% of the initial adsorption amount after 80 adsorption/desorption cycles. The in situ DRIFTS experiments suggested the formation of bicarbonate species under wet conditions. DFT calculations indicated that the stronger bonding between Mg_(0.55)Al-O support and solid amine was caused by the abundance of oxygen defects on MMOs confirmed by XPS and ESR, which favors the charge transfer between the support and amine,resulting in intense interaction and excellent regenerability. This work for the first time conducted comprehensive and systematic investigation on the stabilization mechanism for MMOs supported solid amine adsorbents with highest uptake and superior cyclic stability in depth, which is different from the most popular SiO_(2)-support, thus providing facile strategy and comprehensive theoretical mechanism support for future research about DAC materials.
基金Project supported by CAST Innovation Fund (Grant No.CAST-BISEE2019-040)。
文摘In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.
基金Supported by the National Natural Science Foundation of China under Grant No 616340084the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2014101+1 种基金the International Cooperation Project of Chinese Academy of Sciencesthe Austrian-Chinese Cooperative R&D Projects under Grant No 172511KYSB20150006
文摘Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/Al2O3(AHA) high-k gate stack structure under in-situ 10 keV x-rays are studied. The C-V characteristics at different radiation doses demonstrate that charge stored in the device continues to be leaked away during the irradiation,thereby inducing the shift of flat band voltage(V(fb)). The dc memory window shows insignificant changes, suggesting the existence of good P/E ability. Furthermore, the physical mechanisms of TID induced radiation damages in AHA-based CTM are analyzed.
文摘Heavy metal contaminated water sources can cause serious health problems for humans,animals,and plants.Heavy metals can lead to the decrease or loss of liver,kidney,and brain function.Objective:The aim of this research is to examine the effect of charge on adsorbents in the removal of metal cations.Study Design&Methods:Standard solutions of Ca,Cu,Pb,and Zn with concentrations of 1,000 ppm were treated with sodium carbonate and sodium phosphate with various charges.Then,the solutions were placed on a shaker for 24 h,centrifuged,and the supernatant was analyzed using ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry).Results:The order of average metal removal by sodium phosphates is:dibasic(99.3%)>monobasic(96.5%)>tribasic(95.4%).The average metal removal by sodium carbonate and bicarbonate is 98.5% and 96.4% respectively.Conclusion:The adsorbent removability depends on the relationship between the charge present on the metal and the charge on the adsorbent.Thus,metal cations in this study with a+2 charge had a greater affinity for the adsorbent with-2 charged ligands,dibasic sodium phosphate and sodium carbonate.
文摘The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate dielectric. The temperature-dependent gate voltage-drain current and room temperature gate capacitance are measured to extract the carrier mobility and to estimate the quantum capacitance of the GFET. The device shows the mobility value of gOO cm^2 /V.s at room temperature and it decreases to 45 cm^2 /V.s for 20 K due to the increase of n0. These results indicate that the phonon scattering is not the dominant process for the unevenness dielectric layer while the coulomb scattering by charged impurities degrades the device characteristically at low temperature.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304401)the National Natural Science Foundation of China(Grant Nos.11622434,11474318,91336211,and 11634013)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030100)Hubei Province Science Fund for Distinguished Young Scholars(Grant No.2017CFA040)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015274)
文摘In this paper,we introduce a method of quantitatively evaluating and controlling the space charge effect of a lasercooled three-dimensional(3 D) ion system in a linear Paul trap.The relationship among cooling efficiency,ion quantity,and trapping strength is analyzed quantitatively,and the dynamic space distribution and temporal evolution of the 3 D ion system on a secular motion period time scale in the cooling process are obtained.The ion number influences the eigen-micromotion feature of the ion system.When trapping parameter q is ~ 0.3,relatively ideal cooling efficiency and equilibrium temperature can be obtained.The decrease of axial electrostatic potential is helpful in reducing the micromotion heating effect and the degradation in the total energy.Within a single secular motion period under different cooling conditions,ions transform from the cloud state(each ion disperses throughout the envelope of the ion system) to the liquid state(each ion is concentrated at a specific location in the ion system) and then to the crystal state(each ion is subjected to a fixed motion track).These results are conducive to long-term storage and precise control,motion effect suppression,high-efficiency cooling,and increasing the precision of spectroscopy for a 3 D ion system.
文摘Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reactant(s)in the local reaction zone.Taking H_(2)O_(2)redox reactions at Pt(111)as a model system,we reveal a peculiar surface charge effect using ab initio molecular dynamics simulations of electrified Pt(111)-water interfaces.In this scenario,the negative surface charge on Pt(111)repels the O-O bond of the reactant(H_(2)O_(2))farther away from the electrode surface.This leads to a higher activation barrier for breaking the O-O bond.Incorporating this microscopic mechanism into a microkinetic-double-layer model,we are able to semi-quantitatively interpret the pH-dependent activity of H_(2)O_(2)redox reactions at Pt(111),especially the anomalously suppressed activity of H_(2)O_(2)reduction with decreasing electrode potential.The relevance of the present surface charge effect is also examined in wider scenarios with different electrolyte cations,solution pHs,crystal facets of the catalyst,and model parameters.In contrast with previous mechanisms focusing on how surface charge influences the local reaction condition at a fixed reaction plane,the present work gives an example in which the location of the reaction plane is adjusted by the surface charge.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB832902)the National Natural Science Foundation of China(Grant Nos.11275241,11205225,11105192,and 11275238)
文摘Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by the Coulomb repulsion and by the effective nuclear charge (Zeff) agrees well with the experimental data. Comparison of Fe K-shell X-ray emission induced by 5 MeV xenon ions with different initial charge states (20+, 22+, 26+, 30+) verifies the applicability of the effective nuclear charge (Zeff) correction for the BEA model. It is found that Zeff correction is reasonable to describe direct ionization induced by xenon ions with no initial M-shell vacancies. However, when the M shell is opened, the Zeff corrected BEA model is unable to explain the inner-shell ionization, and the electron transfer by molecular-orbital promotion should be considered.
基金funded by the Open Foundation of Engi-neering Research Center of Construction Technology of Precast Concrete of Zhejiang Province(No.ZZP1902).
文摘Ultrafine particles(UFPs)are harmful to human beings,and their effective removal from the environment is an urgent necessity.In this study,a dielectric barrier discharge(DBD)reactor packed with porous alumina(PA)balls driven by a pulse power supply was developed to remove the UFPs(ranging from 20 to 100 nm)from the exhaust gases of kerosene combustion.Five types of DBD reactors were established to evaluate the effect of plasma catalysis on the removal efficiency of UFPs.The influences of gasflow rate,peak voltage and pulse frequency of different reactors on UFPs removal were investigated.It was found that a high total UFP removal of 91.4%can be achieved in the DBD reactor entirely packed with PA balls.The results can be attributed to the enhanced charge effect of the UFPs with PA balls in the discharge space.The UFP removals by diffusion deposition and electrostatic attraction were further calculated,indicating that particle charging is vital to achieve high removal efficiency for UFPs.
文摘The "cascade static lens (CSL) gauge" has a high sensitivity(S) because the emitted electrons repeat the go and back oscillation before they are received by the electrodes. (S=18.6 Pa<sup>-1</sup> (2480 Torr<sup>-1</sup> in a
基金funded by the China Postdoctoral Science Foundation (pre-station,No.2019TQ0050)Applied Basic Research Program of Sichuan Province (No.2020YJ0068)+6 种基金the China Postdoctoral Science Foundation (No.2020M673186)National Natural Science Foundation of China (No.22002014)the Applied Basic Research Program of Sichuan Province (No.2020ZYD014)financial support from the National Natural Science Foundation of China (No.21903084)Applied Basic Research Program of Sichuan Province (No.2021YJ0408)financial support from the National Natural Science Foundation of China (No.52002051)the Fundamental Research Funds for the Central Universities,SCUT (No.ZYGX2020J009)。
文摘The recombination of charge carriers arriving from the random charge movement in semiconductor pho-tocatalysts greatly limits the practical application of solar-driven H_(2)evolution.The design of photo-catalytic systems with spatially oriented charge-transfer is a promising route to achieve high charge-separation efficiency for photocatalysts.Herein,novel sea-urchin-like Re S_(2)nanosheet/TiO_(2)nanoparticle heterojunctions(SURTHs)are constructed.The unique sea-urchin-like structure endows the ReS_(2)cocat-alyst with an unusual charge edge-collection effect,which leads to a significant acceleration of charge separation and transfer,as evidenced by the well-designed selective photodeposition of Pt quantum dots in SURTHs.The markedly improved charge transfer capacity contributes to a high photocatalytic H_(2)evo-lution rate of 3.71 mmol h^(−1)g^(−1)for SURTHs(an apparent quantum efficiency(AQE)of 16.09%),up to 231.9 times by contrast with that of P25 TiO_(2).This work would provide a new platform for designing the high-efficiency cocatalyst/photocatalyst system with excellent charge transfer capacity.
文摘The article theoretically studied the charge-exchange effects on space charge limitedelectron and ion current densities of non-relativistic one-dimensional slab ion diode, and comparedwith those of without charge exchange.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374131,11674404,11404137 and 61378085the Program for New Century Excellent Talents in University under Grant No NCET-13-0824+1 种基金the Program for the Development of Science and Technology of Jilin Province under Grant Nos 201201079 and 20150204085GXthe Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province under Grant No 20150221
文摘The charge transport behavior of barium fluoride nanocrystals is investigated by in situ impedance measurement up to 35 GPa. It is found that the parameters change discontinuously at about 6.9 GPa, corresponding to the phase transition of BaF2 nanocrystals under high pressure. The charge carriers in BaF2 nanocrystals include both Fions and electrons. Pressure makes the electronic transport more difficult. The defects at grains dominate the electronic transport process. Pressure could make the charge-discharge processes in the Fm3m phase more difficult.
文摘Electric fields induced by ring and pin electrodes in electrostatic charged powder sprayingtechnique are analysed. The fundamental formulae to deseribe these fields have been built up. Theseformulae could be used to design electrostatic charged podwer spraying system. The chargingeffectiveness of ring and pin electrode is experimentally investigated and compared each other. Theperformance of ring electrode is better than that of pin electrode.
基金supported by the National Natural Science Foundation of China (Grant Nos.92372101,52162036 and 21875155)the Fundamental Research Funds for the Central Universities (Grant Nos.20720220010)the National Key Research and Development Program of China (Grant Nos.2021YFA1201502)。
文摘The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH groups in PAA leads to the formation of intramolecular and intermolecular hydrogen bonds,greatly weakening the bonding force of the binder to SiO surface.However,strengthening the binder-material interaction from the perspective of binder molecular regulation poses a significant challenge.Herein,a modified PAA-Li_(x)(0.25≤x≤1)binder with prominent mechanical properties and adhesion strength is specifically synthesized for SiO anodes by quantitatively substituting the carboxylic hydrogen with lithium.The appropriate lithium substitution(x=0.25)not only effectively increases the number of hydrogen bonds between the PAA binder and SiO surface owing to charge repulsion effect between ions,but also guarantees moderate entanglement between PAA-Li_x molecular chains through the ion-dipole interaction.As such,the PAA-Li_(0.25)/SiO electrode exhibits exceptional mechanical properties and the lowest volume change,as well as the optimum cycling(1237.3 mA h g^(-1)after 100cycles at 0.1 C)and rate performance(1000.6 mA h g^(-1)at 1 C),significantly outperforming the electrode using pristine PAA binder.This work paves the way for quantitative regulation of binders at the molecular level.