We studied the alloying effect in lr-based alloys on the catalysis of the hydrogen oxidation reaction (HOP,) in both acidic and alkaline medium. IrFe, lrNi and IrCo alloy catalysts with nanoparticle size of 〈S nm w...We studied the alloying effect in lr-based alloys on the catalysis of the hydrogen oxidation reaction (HOP,) in both acidic and alkaline medium. IrFe, lrNi and IrCo alloy catalysts with nanoparticle size of 〈S nm were obtained by our solvent-vaporization plus hydrogen reduction method. The second metal played an important role in tuning the crystal structure and surface electronic structure of the Ir-based alloy catalyst. Among the lrFe, IrCo and lrNi alloy catalysts, Ni induced a mid-sized contrac- tion of the lr lattice, and gave the best HOR activity in both acidic and alkaline medium. In acidic medium, the weakening of the Ir-Had interaction caused by the electronic effect of M (M = Fe, Ni, Co) alloying is responsible for the enhancement of HOR activity. The oxophilic effect of the catalytic metal surface, which affects OHad adsorption and desorption and surface Had coverage, has a large impact on the HOR activity in the case of alkaline medium,展开更多
A series of calcined carbonate layered double hydroxides (CLDHs) with various metal compositions and different M^2+/M^3+ ratios were prepared as adsorbents for perchlorate. Adsorption isotherms fit Langmuir model ...A series of calcined carbonate layered double hydroxides (CLDHs) with various metal compositions and different M^2+/M^3+ ratios were prepared as adsorbents for perchlorate. Adsorption isotherms fit Langmuir model well, and the adsorption amount followed the order of MgA1-CLDHs 1〉 MgFeCLDHs 〉〉 ZnA1-CLDHs. The isotherms of MgA1-CLDHs and MgFe-CLDHs displayed a two-step shape at low and high concentration ranges and increased with an increase in the M^2+/M^3+ ratio from 2 to 4. The two-step isotherm was not observed for ZnA1-CLDHs, and the adsorption was minimally affected by the M^2+/M^3+ ratio. The LDHs, CLDHs and the reconstructed samples were characterized by X-ray diffraction, SEM, FT-IR and Raman spectra to delineate the analysis of perchlorate adsorption mechanisms. The perchlorate adsorption of MgA1-CLDHs and MgFe-CLDHs was dominated by the structural memory effect and the hydrogen bonds between the free hydroxyl groups on the reconstructed-LDHs and the oxygen atoms of the perchlorates. For ZnAI-CLDHs, the perchlorate adsorption was controlled by the structural memory effect only, as the hydroxyl groups on the hydroxide layers preferred to form strong hydrogen bonds with carbonate over perchlorate, which locked the intercalated perchlorate into a more confined nano-interlayer. Several distinct binding mechanisms of perchlorate by CLDHs with unique M^2+ ions were proposed.展开更多
基金supported by the National Basic Research Program of China(973 Program,2012CB215500)the National Natural Science Foundation of China(21573029)the Fundamental Research Funds for the Central Universities(106112015CDJXY220002)
文摘We studied the alloying effect in lr-based alloys on the catalysis of the hydrogen oxidation reaction (HOP,) in both acidic and alkaline medium. IrFe, lrNi and IrCo alloy catalysts with nanoparticle size of 〈S nm were obtained by our solvent-vaporization plus hydrogen reduction method. The second metal played an important role in tuning the crystal structure and surface electronic structure of the Ir-based alloy catalyst. Among the lrFe, IrCo and lrNi alloy catalysts, Ni induced a mid-sized contrac- tion of the lr lattice, and gave the best HOR activity in both acidic and alkaline medium. In acidic medium, the weakening of the Ir-Had interaction caused by the electronic effect of M (M = Fe, Ni, Co) alloying is responsible for the enhancement of HOR activity. The oxophilic effect of the catalytic metal surface, which affects OHad adsorption and desorption and surface Had coverage, has a large impact on the HOR activity in the case of alkaline medium,
基金supported by the National Natural Science Foundation of China(No.41071210)the Zhejiang Provincial Natural Science Foundation of China(No.R5100105)the Doctoral Fund of Ministry of Education China(No.J20130039)
文摘A series of calcined carbonate layered double hydroxides (CLDHs) with various metal compositions and different M^2+/M^3+ ratios were prepared as adsorbents for perchlorate. Adsorption isotherms fit Langmuir model well, and the adsorption amount followed the order of MgA1-CLDHs 1〉 MgFeCLDHs 〉〉 ZnA1-CLDHs. The isotherms of MgA1-CLDHs and MgFe-CLDHs displayed a two-step shape at low and high concentration ranges and increased with an increase in the M^2+/M^3+ ratio from 2 to 4. The two-step isotherm was not observed for ZnA1-CLDHs, and the adsorption was minimally affected by the M^2+/M^3+ ratio. The LDHs, CLDHs and the reconstructed samples were characterized by X-ray diffraction, SEM, FT-IR and Raman spectra to delineate the analysis of perchlorate adsorption mechanisms. The perchlorate adsorption of MgA1-CLDHs and MgFe-CLDHs was dominated by the structural memory effect and the hydrogen bonds between the free hydroxyl groups on the reconstructed-LDHs and the oxygen atoms of the perchlorates. For ZnAI-CLDHs, the perchlorate adsorption was controlled by the structural memory effect only, as the hydroxyl groups on the hydroxide layers preferred to form strong hydrogen bonds with carbonate over perchlorate, which locked the intercalated perchlorate into a more confined nano-interlayer. Several distinct binding mechanisms of perchlorate by CLDHs with unique M^2+ ions were proposed.