Non-Abelian topological insulators are characterized by matrix-valued,non-commuting topological charges with regard to more than one energy gap.Their descriptions go beyond the conventional topological band theory,in ...Non-Abelian topological insulators are characterized by matrix-valued,non-commuting topological charges with regard to more than one energy gap.Their descriptions go beyond the conventional topological band theory,in which an additive integer like the winding or Chern number is endowed separately with each(degenerate group of)energy band(s).In this work,we reveal that Floquet(time-periodic)driving could not only enrich the topology and phase transitions of non-Abelian topological matter,but also induce bulk-edge correspondence unique to nonequilibrium setups.Using a one-dimensional,three-band model as an illustrative example,we demonstrate that Floquet driving could reshuffle the phase diagram of the non-driven system,yielding both gapped and gapless Floquet band structures with non-Abelian topological charges.Moreover,by dynamically tuning the anomalous Floquet π-quasienergy gap,non-Abelian topological transitions inaccessible to static systems could arise,leading to much more complicated relations between non-Abelian topological charges and Floquet edge states.These discoveries put forth periodic driving as a powerful scheme of engineering non-Abelian topological phases and incubating unique non-Abelian band topology beyond equilibrium.展开更多
Functional traits are characteristics associated with the growth,reproduction,and survival of individuals.Studying them helps us understand how species traits drive ecosystem functioning.Thus,we evaluated the differen...Functional traits are characteristics associated with the growth,reproduction,and survival of individuals.Studying them helps us understand how species traits drive ecosystem functioning.Thus,we evaluated the differences in traits and functional diversity between forest edges and interiors,and how the inclusion of intraspecific trait variation affects the assessment of functional diversity in these habitats.We sampled 10 representative forest patches,and,in each patch,we established five plots on the edge and five inside the forest,collecting leaf functional traits,allometric and wood density for all species.We assessed functional diversity using functional richness(FRic),divergence(FDiv),and dispersion(FDis).To assess the impact of incorporating intraspecific variation when comparing trait values and functional diversity indices,we established two scenarios:one that excludes intraspecific variation and another that includes it.We found that the edge and interior harbor individuals with distinct functional traits that alleviate the inherent stress of each habitat.The edge was also found to be more selective in terms of the range of functional traits,resulting in lower functional diversity.Our findings demonstrated that habitats play an important role in intraspecific trait variation(ITV)and that statistically significant differences between habitats,in relation to traits and functional diversity,were better observed with the inclusion of intraspecific variation.Our study highlights the potential of using natural forest patches to understand the edge effect,regardless of habitat loss.Additionally,we emphasize the importance of incorporating ITV into functional diversity studies,especially those on a smaller scale that incorporate quantitative variables,to better understand and predict ecological patterns.展开更多
This paper proposes a class of novel progressive edge growth-based codebooks for downlink sparse code multiple access(SCMA)systems.In the first scheme,we propose to progressively design the codebooks of each resource ...This paper proposes a class of novel progressive edge growth-based codebooks for downlink sparse code multiple access(SCMA)systems.In the first scheme,we propose to progressively design the codebooks of each resource node(RN)instead of rotating a mother constellation(MC)as in the conventional SCMA works.In the other one,based on the MC,a multi-resources rotated codebooks are proposed to improve the performance of the superimposed constellations.The resultant codebooks are respectively referred to as the resource edge multidimensional codebooks(REMC)and the user edge multi-dimensional codebooks(UEMC).Additionally,we delve into the detailed design of the MC and the superimposed constellation.Then,we pay special attention to the application of the proposed schemes to challenging design cases,particularly for the high dimensional,high rate,and irregular codebooks,where the corresponding simplified schemes are proposed to reduce the complexity of codebook design.Finally,simulation results are presented to demonstrate the superiority of our progressive edge growth-based schemes.The numerical results indicate that the proposed codebooks significantly outperform the stateof-the-art codebooks.In addition,we also show that the proposed REMC codebooks outperform in the lower signal-to-noise ratio(SNR)regime,whereas the UEMC codebooks exhibit better performance at higher SNRs.展开更多
Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of conge...Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes.Recently,Multi-access Edge Computing(MEC)-enabled heterogeneous networks,which leverage edge caches for proximity delivery,have emerged as a promising solution to all of these problems.Designing an effective edge caching scheme is critical to its success,however,in the face of limited resources.We propose a novel Knowledge Graph(KG)-based Dueling Deep Q-Network(KG-DDQN)for cooperative caching in MEC-enabled heterogeneous networks.The KGDDQN scheme leverages a KG to uncover video relations,providing valuable insights into user preferences for the caching scheme.Specifically,the KG guides the selection of related videos as caching candidates(i.e.,actions in the DDQN),thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN.Extensive simulation results validate the convergence effectiveness of the KG-DDQN,and it also outperforms baselines regarding cache hit rate and service delay.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milli...Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.展开更多
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the...As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.展开更多
As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by...As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems.展开更多
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta...Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.展开更多
The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc...The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment.展开更多
Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the...Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry.However,the intensity of first-order Raman scattering at crystal edges has been rarely explored,although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes.Here,by taking Ga As crystal with a well-defined edge as an example,we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge.This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge,which are confirmed by the finite-difference time-domain simulations.Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields,which quantitatively reproduce the corresponding experimental results.These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light–matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices.展开更多
Rod-airfoil interaction noise becomes a major issue in some aeronautical applications.The design of four wavy leading edges(WLEs)with varying wavelengths,bioinspired by the tubercles on humpback whales’flippers,aims ...Rod-airfoil interaction noise becomes a major issue in some aeronautical applications.The design of four wavy leading edges(WLEs)with varying wavelengths,bioinspired by the tubercles on humpback whales’flippers,aims to mitigate far-field noise.Among these cases,a reduction in the wavelength is found to be advantageous for noise suppression,with the smallest wavelength case achieving a maximum noise reduction of 1.9 dB.Furthermore,the noise radiation induced by WLEs is suppressed mainly at medium frequencies.The theory of multiprocess aeroacoustics is applied to reveal their underlying mechanisms.The dominant factor is the source cutoff effect,which significantly decreases the source strength on hills.Additionally,spanwise decoherence with phase interference serves as another crucial mechanism,particularly for reducing mid-frequency noise.展开更多
Mitral regurgitation (MR) is a highly prevalent valvular heart disease globally,with untreated severe cases demonstrating associations with elevated morbidity,mortality,and adverse cardiovascular outcomes.[1,2]While t...Mitral regurgitation (MR) is a highly prevalent valvular heart disease globally,with untreated severe cases demonstrating associations with elevated morbidity,mortality,and adverse cardiovascular outcomes.[1,2]While transcatheter edge-toedge repair (TEER) has emerged as an alternative option for high surgical risk patients with severe MR,[3,4]severe MR of Carpentier class IIIa (characterized by restricted leaflet motion during both systole and diastole) has been considered a relative contraindication for TEER interventions due to stenosis risk and procedural complexity.[5,6]展开更多
A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of fr...A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of freedom of the Trailing Edge Flap(TEF)is analyzed by employing an inverse nested overset grid method.Simulation of non-rotational and rotational modes of blade motion are carried out to investigate the formation and development of TEF shedding vortex with high-frequency deflection of TEF.Moreover,the mechanism of TEF deflection interference with blade tip vortex and overall rotor aerodynamics is also explored.In nonrotational mode,two bundles of vortices form at the gap ends of TEF and the main blade and merge into a single TEF vortex.Dynamic deflection of the TEF significantly interferes with the blade tip vortex.The position of the blade tip vortex consistently changes,and its frequency is directly related to the frequency of TEF deflection.In rotational mode,the tip vortex forms a helical structure.The end vortices at the gap sides co-swirl and subsequently merge into the concentrated beam of tip vortices,causing fluctuations in the vorticity and axial position of the tip vortex under the rotor.This research concludes with the investigation on suppression of Blade Vortex Interaction(BVI),showing an increase in miss distance and reduction in the vorticity of tip vortex through TEF phase control at a particular control frequency.Through this mechanism,a designed TEF deflection law increases the miss distance by 34.7%and reduces vorticity by 11.9%at the target position,demonstrating the effectiveness of AFC in mitigating BVI.展开更多
With the rapid advancement of ICT and IoT technologies,the integration of Edge and Fog Computing has become essential to meet the increasing demands for real-time data processing and network efficiency.However,these t...With the rapid advancement of ICT and IoT technologies,the integration of Edge and Fog Computing has become essential to meet the increasing demands for real-time data processing and network efficiency.However,these technologies face critical security challenges,exacerbated by the emergence of quantum computing,which threatens traditional encryption methods.The rise in cyber-attacks targeting IoT and Edge/Fog networks underscores the need for robust,quantum-resistant security solutions.To address these challenges,researchers are focusing on Quantum Key Distribution and Post-Quantum Cryptography,which utilize quantum-resistant algorithms and the principles of quantum mechanics to ensure data confidentiality and integrity.This paper reviews the current security practices in IoT and Edge/Fog environments,explores the latest advancements in QKD and PQC technologies,and discusses their integration into distributed computing systems.Additionally,this paper proposes an enhanced QKD protocol combining the Cascade protocol and Kyber algorithm to address existing limitations.Finally,we highlight future research directions aimed at improving the scalability,efficiency,and practicality of QKD and PQC for securing IoT and Edge/Fog networks against evolving quantum threats.展开更多
The proliferation of Internet of Things(IoT)devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing.Nevertheless,the distributed nature of edge computing pr...The proliferation of Internet of Things(IoT)devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing.Nevertheless,the distributed nature of edge computing presents substantial security challenges,rendering it a prominent target for sophisticated malware attacks.Existing signature-based and behavior-based detection methods are ineffective against the swiftly evolving nature of malware threats and are constrained by the availability of resources.This paper suggests the Genetic Encoding for Novel Optimization of Malware Evaluation(GENOME)framework,a novel solution that is intended to improve the performance of malware detection and classification in peripheral computing environments.GENOME optimizes data storage and computa-tional efficiency by converting malware artifacts into compact,structured sequences through a Deoxyribonucleic Acid(DNA)encoding mechanism.The framework employs two DNA encoding algorithms,standard and compressed,which substantially reduce data size while preserving high detection accuracy.The Edge-IIoTset dataset was used to conduct experiments that showed that GENOME was able to achieve high classification performance using models such as Random Forest and Logistic Regression,resulting in a reduction of data size by up to 42%.Further evaluations with the CIC-IoT-23 dataset and Deep Learning models confirmed GENOME’s scalability and adaptability across diverse datasets and algorithms.The potential of GENOME to address critical challenges,such as the rapid mutation of malware,real-time processing demands,and resource limitations,is emphasized in this study.GENOME offers comprehensive protection for peripheral computing environments by offering a security solution that is both efficient and scalable.展开更多
Numerical simulations on the coupling actions between the free surface oscillation in the moonpool and the heave motion response of hulls with vertical mooring stiffness are carried out in this study,where the influen...Numerical simulations on the coupling actions between the free surface oscillation in the moonpool and the heave motion response of hulls with vertical mooring stiffness are carried out in this study,where the influences of edge profiles,including sharp and convex edge profiles,on the coupling actions are considered.Two-peak variations in the free surface oscillations in the moonpool with incident wave frequencies can be observed,which are defined as the first and second peak frequencies.The free surface oscillations and heave motion responses show in-phase and out-of-phase relationships at the first and second peak frequencies,respectively.The convex edge profiles are able to generate effective suppressing actions at the second peak frequencies.However,it is only efficient for large vertical stiffness at the first peak frequency.The relative velocity between the fluid flow along the moonpool bottom and the heave motion of the hulls is the essential reason.展开更多
An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This ...An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This paper presents a robust solution in the form of a fast flutter suppression digital control logic of edge computing aileron mechatronics(ECAM).We have effectively eliminated passive and active oscillating response biases by integrating nonlinear functional parameters and an antiphase hysteresis Schmitt trigger.Our findings demonstrate that self-tuning nonlinear parameters can optimize stability,robustness,and accuracy.At the same time,the antiphase hysteresis Schmitt trigger effectively rejects flutters without the need for collaborative navigation and guidance.Our hardware-in-the-loop simulation results confirm that this approach can eliminate aircraft jitter and shaking while ensuring expected stability and maneuverability.In conclusion,this nonlinear aileron mechatronics with a Schmitt positive feedback mechanism is a highly effective solution for distributed flight control and active flutter rejection.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12275260 and 11905211)the Fundamental Research Funds for the Central Universities(Grant No.202364008)the Young Talents Project of Ocean University of China。
文摘Non-Abelian topological insulators are characterized by matrix-valued,non-commuting topological charges with regard to more than one energy gap.Their descriptions go beyond the conventional topological band theory,in which an additive integer like the winding or Chern number is endowed separately with each(degenerate group of)energy band(s).In this work,we reveal that Floquet(time-periodic)driving could not only enrich the topology and phase transitions of non-Abelian topological matter,but also induce bulk-edge correspondence unique to nonequilibrium setups.Using a one-dimensional,three-band model as an illustrative example,we demonstrate that Floquet driving could reshuffle the phase diagram of the non-driven system,yielding both gapped and gapless Floquet band structures with non-Abelian topological charges.Moreover,by dynamically tuning the anomalous Floquet π-quasienergy gap,non-Abelian topological transitions inaccessible to static systems could arise,leading to much more complicated relations between non-Abelian topological charges and Floquet edge states.These discoveries put forth periodic driving as a powerful scheme of engineering non-Abelian topological phases and incubating unique non-Abelian band topology beyond equilibrium.
基金the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) by granting the scholarship (Finance Code 001)supported by the Brazilian National Council for Scientific and Technological Development (CNPq, project number 433828/2018-8,435598/2018-0)+1 种基金the Minas Gerais Research Funding Foundation (FAPEMIG, project number CRA APQ 00929-15)CNPq productivity fellowships
文摘Functional traits are characteristics associated with the growth,reproduction,and survival of individuals.Studying them helps us understand how species traits drive ecosystem functioning.Thus,we evaluated the differences in traits and functional diversity between forest edges and interiors,and how the inclusion of intraspecific trait variation affects the assessment of functional diversity in these habitats.We sampled 10 representative forest patches,and,in each patch,we established five plots on the edge and five inside the forest,collecting leaf functional traits,allometric and wood density for all species.We assessed functional diversity using functional richness(FRic),divergence(FDiv),and dispersion(FDis).To assess the impact of incorporating intraspecific variation when comparing trait values and functional diversity indices,we established two scenarios:one that excludes intraspecific variation and another that includes it.We found that the edge and interior harbor individuals with distinct functional traits that alleviate the inherent stress of each habitat.The edge was also found to be more selective in terms of the range of functional traits,resulting in lower functional diversity.Our findings demonstrated that habitats play an important role in intraspecific trait variation(ITV)and that statistically significant differences between habitats,in relation to traits and functional diversity,were better observed with the inclusion of intraspecific variation.Our study highlights the potential of using natural forest patches to understand the edge effect,regardless of habitat loss.Additionally,we emphasize the importance of incorporating ITV into functional diversity studies,especially those on a smaller scale that incorporate quantitative variables,to better understand and predict ecological patterns.
文摘This paper proposes a class of novel progressive edge growth-based codebooks for downlink sparse code multiple access(SCMA)systems.In the first scheme,we propose to progressively design the codebooks of each resource node(RN)instead of rotating a mother constellation(MC)as in the conventional SCMA works.In the other one,based on the MC,a multi-resources rotated codebooks are proposed to improve the performance of the superimposed constellations.The resultant codebooks are respectively referred to as the resource edge multidimensional codebooks(REMC)and the user edge multi-dimensional codebooks(UEMC).Additionally,we delve into the detailed design of the MC and the superimposed constellation.Then,we pay special attention to the application of the proposed schemes to challenging design cases,particularly for the high dimensional,high rate,and irregular codebooks,where the corresponding simplified schemes are proposed to reduce the complexity of codebook design.Finally,simulation results are presented to demonstrate the superiority of our progressive edge growth-based schemes.The numerical results indicate that the proposed codebooks significantly outperform the stateof-the-art codebooks.In addition,we also show that the proposed REMC codebooks outperform in the lower signal-to-noise ratio(SNR)regime,whereas the UEMC codebooks exhibit better performance at higher SNRs.
基金supported by the National Natural Science Foundation of China(Nos.62201419,62372357)the Natural Science Foundation of Chongqing(CSTB2023NSCQ-LMX0032)the ISN State Key Laboratory.
文摘Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes.Recently,Multi-access Edge Computing(MEC)-enabled heterogeneous networks,which leverage edge caches for proximity delivery,have emerged as a promising solution to all of these problems.Designing an effective edge caching scheme is critical to its success,however,in the face of limited resources.We propose a novel Knowledge Graph(KG)-based Dueling Deep Q-Network(KG-DDQN)for cooperative caching in MEC-enabled heterogeneous networks.The KGDDQN scheme leverages a KG to uncover video relations,providing valuable insights into user preferences for the caching scheme.Specifically,the KG guides the selection of related videos as caching candidates(i.e.,actions in the DDQN),thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN.Extensive simulation results validate the convergence effectiveness of the KG-DDQN,and it also outperforms baselines regarding cache hit rate and service delay.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金co-supported by the Science Center for Gas Turbine Project, China(No. P2022-AB-IV-001-002)the National Natural Science Foundation of China (No. 91960203)+1 种基金the Fundamental Research Funds for the Central Universities (No. D5000230048)the Innovation Capability Support Program of Shaanxi (No. 2022TD-60)
文摘Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.
基金funded by the Fundamental Research Funds for the Central Universities(J2023-024,J2023-027).
文摘As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.
文摘As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems.
基金supported in part by the National Natural Science Foundation of China under Grant No.61473066in part by the Natural Science Foundation of Hebei Province under Grant No.F2021501020+2 种基金in part by the S&T Program of Qinhuangdao under Grant No.202401A195in part by the Science Research Project of Hebei Education Department under Grant No.QN2025008in part by the Innovation Capability Improvement Plan Project of Hebei Province under Grant No.22567637H
文摘Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.
基金the National Research Foundation(NRF)Singapore mid-sized center grant(NRF-MSG-2023-0002)FrontierCRP grant(NRF-F-CRP-2024-0006)+2 种基金A*STAR Singapore MTC RIE2025 project(M24W1NS005)IAF-PP project(M23M5a0069)Ministry of Education(MOE)Singapore Tier 2 project(MOE-T2EP50220-0014).
文摘The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment.
基金Project supported by the National Key Research and Development Program of China(Grant No.2023YFA1407000)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB0460000)+4 种基金the National Natural Science Foundation of China(Grant Nos.12322401,12127807,and 12393832)CAS Key Research Program of Frontier Sciences(Grant No.ZDBS-LY-SLH004)Beijing Nova Program(Grant No.20230484301)Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2023125)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-026)。
文摘Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry.However,the intensity of first-order Raman scattering at crystal edges has been rarely explored,although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes.Here,by taking Ga As crystal with a well-defined edge as an example,we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge.This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge,which are confirmed by the finite-difference time-domain simulations.Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields,which quantitatively reproduce the corresponding experimental results.These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light–matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices.
基金supported by the National Natural Science Foundation of China(12322210,12172351,92252202,and 12388101)the Fundamental Research Funds for the Central Universities.
文摘Rod-airfoil interaction noise becomes a major issue in some aeronautical applications.The design of four wavy leading edges(WLEs)with varying wavelengths,bioinspired by the tubercles on humpback whales’flippers,aims to mitigate far-field noise.Among these cases,a reduction in the wavelength is found to be advantageous for noise suppression,with the smallest wavelength case achieving a maximum noise reduction of 1.9 dB.Furthermore,the noise radiation induced by WLEs is suppressed mainly at medium frequencies.The theory of multiprocess aeroacoustics is applied to reveal their underlying mechanisms.The dominant factor is the source cutoff effect,which significantly decreases the source strength on hills.Additionally,spanwise decoherence with phase interference serves as another crucial mechanism,particularly for reducing mid-frequency noise.
基金supported by the 1·3·5 Project for Disciplines of Excellence from West China Hospital of Sichuan University(ZYGD23021&23HXFH009)Sichuan Science and Technology Program(No.2025ZNSFSC1698)the Sichuan Provincial Cadre Health Research Program(ZH2024-103).
文摘Mitral regurgitation (MR) is a highly prevalent valvular heart disease globally,with untreated severe cases demonstrating associations with elevated morbidity,mortality,and adverse cardiovascular outcomes.[1,2]While transcatheter edge-toedge repair (TEER) has emerged as an alternative option for high surgical risk patients with severe MR,[3,4]severe MR of Carpentier class IIIa (characterized by restricted leaflet motion during both systole and diastole) has been considered a relative contraindication for TEER interventions due to stenosis risk and procedural complexity.[5,6]
基金supported by the National Natural Science Foundation of China(No.11972190)。
文摘A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of freedom of the Trailing Edge Flap(TEF)is analyzed by employing an inverse nested overset grid method.Simulation of non-rotational and rotational modes of blade motion are carried out to investigate the formation and development of TEF shedding vortex with high-frequency deflection of TEF.Moreover,the mechanism of TEF deflection interference with blade tip vortex and overall rotor aerodynamics is also explored.In nonrotational mode,two bundles of vortices form at the gap ends of TEF and the main blade and merge into a single TEF vortex.Dynamic deflection of the TEF significantly interferes with the blade tip vortex.The position of the blade tip vortex consistently changes,and its frequency is directly related to the frequency of TEF deflection.In rotational mode,the tip vortex forms a helical structure.The end vortices at the gap sides co-swirl and subsequently merge into the concentrated beam of tip vortices,causing fluctuations in the vorticity and axial position of the tip vortex under the rotor.This research concludes with the investigation on suppression of Blade Vortex Interaction(BVI),showing an increase in miss distance and reduction in the vorticity of tip vortex through TEF phase control at a particular control frequency.Through this mechanism,a designed TEF deflection law increases the miss distance by 34.7%and reduces vorticity by 11.9%at the target position,demonstrating the effectiveness of AFC in mitigating BVI.
基金supported by the National Research Foundation of Korea(NRF)funded by theMinistry of Science and ICT(2022K1A3A1A61014825)。
文摘With the rapid advancement of ICT and IoT technologies,the integration of Edge and Fog Computing has become essential to meet the increasing demands for real-time data processing and network efficiency.However,these technologies face critical security challenges,exacerbated by the emergence of quantum computing,which threatens traditional encryption methods.The rise in cyber-attacks targeting IoT and Edge/Fog networks underscores the need for robust,quantum-resistant security solutions.To address these challenges,researchers are focusing on Quantum Key Distribution and Post-Quantum Cryptography,which utilize quantum-resistant algorithms and the principles of quantum mechanics to ensure data confidentiality and integrity.This paper reviews the current security practices in IoT and Edge/Fog environments,explores the latest advancements in QKD and PQC technologies,and discusses their integration into distributed computing systems.Additionally,this paper proposes an enhanced QKD protocol combining the Cascade protocol and Kyber algorithm to address existing limitations.Finally,we highlight future research directions aimed at improving the scalability,efficiency,and practicality of QKD and PQC for securing IoT and Edge/Fog networks against evolving quantum threats.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)(Project Nos.RS-2024-00438551,30%,2022-11220701,30%,2021-0-01816,30%)the National Research Foundation of Korea(NRF)grant funded by the Korean Government(Project No.RS2023-00208460,10%).
文摘The proliferation of Internet of Things(IoT)devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing.Nevertheless,the distributed nature of edge computing presents substantial security challenges,rendering it a prominent target for sophisticated malware attacks.Existing signature-based and behavior-based detection methods are ineffective against the swiftly evolving nature of malware threats and are constrained by the availability of resources.This paper suggests the Genetic Encoding for Novel Optimization of Malware Evaluation(GENOME)framework,a novel solution that is intended to improve the performance of malware detection and classification in peripheral computing environments.GENOME optimizes data storage and computa-tional efficiency by converting malware artifacts into compact,structured sequences through a Deoxyribonucleic Acid(DNA)encoding mechanism.The framework employs two DNA encoding algorithms,standard and compressed,which substantially reduce data size while preserving high detection accuracy.The Edge-IIoTset dataset was used to conduct experiments that showed that GENOME was able to achieve high classification performance using models such as Random Forest and Logistic Regression,resulting in a reduction of data size by up to 42%.Further evaluations with the CIC-IoT-23 dataset and Deep Learning models confirmed GENOME’s scalability and adaptability across diverse datasets and algorithms.The potential of GENOME to address critical challenges,such as the rapid mutation of malware,real-time processing demands,and resource limitations,is emphasized in this study.GENOME offers comprehensive protection for peripheral computing environments by offering a security solution that is both efficient and scalable.
基金supported by the National Natural Science Foundation of China(Grant Nos.52371267 and 52171250).
文摘Numerical simulations on the coupling actions between the free surface oscillation in the moonpool and the heave motion response of hulls with vertical mooring stiffness are carried out in this study,where the influences of edge profiles,including sharp and convex edge profiles,on the coupling actions are considered.Two-peak variations in the free surface oscillations in the moonpool with incident wave frequencies can be observed,which are defined as the first and second peak frequencies.The free surface oscillations and heave motion responses show in-phase and out-of-phase relationships at the first and second peak frequencies,respectively.The convex edge profiles are able to generate effective suppressing actions at the second peak frequencies.However,it is only efficient for large vertical stiffness at the first peak frequency.The relative velocity between the fluid flow along the moonpool bottom and the heave motion of the hulls is the essential reason.
基金supported in part by the Aeronautical Science Foundation of China under Grant 2022Z005057001the Joint Research Fund of Shanghai Commercial Aircraft System Engineering Science and Technology Innovation Center under CASEF-2023-M19.
文摘An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This paper presents a robust solution in the form of a fast flutter suppression digital control logic of edge computing aileron mechatronics(ECAM).We have effectively eliminated passive and active oscillating response biases by integrating nonlinear functional parameters and an antiphase hysteresis Schmitt trigger.Our findings demonstrate that self-tuning nonlinear parameters can optimize stability,robustness,and accuracy.At the same time,the antiphase hysteresis Schmitt trigger effectively rejects flutters without the need for collaborative navigation and guidance.Our hardware-in-the-loop simulation results confirm that this approach can eliminate aircraft jitter and shaking while ensuring expected stability and maneuverability.In conclusion,this nonlinear aileron mechatronics with a Schmitt positive feedback mechanism is a highly effective solution for distributed flight control and active flutter rejection.