In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh enviro...In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.展开更多
A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including differe...A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including different coil structures,varies.In this study,two planar eddy current probes with differential pickup structures and the same size,Koch and circular probes,were used to compare lift-off effects.The eddy current distributions of the probes perturbed by 0°and 90°cracks were obtained by finite element analysis.The analysis results show that the 90°crack can impede the eddy current induced by the Koch probe even further at relatively low lift-off distance.The peak-to-peak values of the signal output from the two probes were compared at different lift-off distances using finite element analysis and experimental methods.In addition,the effects of different frequencies on the lift-off were studied experimentally.The results show that the signal peak-to-peak value of the Koch probe for the inspection of cracks in 90°orientation is larger than that of the circular probe when the lift-off distance is smaller than 1.2 mm.In addition,the influence of the lift-off distance on the peak-to-peak signal value of the two probes was studied via normalization.This indicates that the influence becomes more evident with an increase in excitation frequency.This research discloses the lift-off effect of differential planar eddy current probes with different coil shapes and proves the detection merit of the Koch probe for 90°cracks at low lift-off distances.展开更多
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot...Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs.展开更多
This study utilized finite element simulation and experimental methods to investigate the evolution of crack detection performanceof a flexible differential fractal Koch eddy current probe at different excitation freq...This study utilized finite element simulation and experimental methods to investigate the evolution of crack detection performanceof a flexible differential fractal Koch eddy current probe at different excitation frequencies as the lift-off distance increases.As the lift-off distanceincreased,the distribution shape of induced eddy currents changed,leading to reduced similarity in the shape of the excitation coil and an expandeddistribution range of induced eddy currents,ultimately resulting in weakened output signal strength.The experimental results showed that forexcitation frequencies of 10 kHz,20 kHz,50 kHz,100 kHz,200 kHz,500 kHz,and1000 kHz,the maximum lift distances of the real partof the output signal when cracks were detected were 5.0 mm,7.0 mm,8.0 mm,8.0 mm,8.0 mm,6.5 mm,and 4.0 mm,respectively.Theimaginary parts were 6.5 mm,6.5 mm,7.5 mm,5.5 mm,8.0 mm,6.5 mm,and 6.5 mm,respectively.展开更多
Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of h...Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of high-speed railway so as to provide a new way of thinking and method for the detection of contact wire injuries of high-speed railway.Design/methodology/approach–Based on the principle of eddy current detection and the specification parameters of high-speed railway contact wires in China,a finite element model for eddy current testing of contact wires was established to explore the variation patterns of crack signal characteristics in numerical simulation.A crack detection system based on eddy current detection was built,and eddy current detection voltage data was obtained for cracks of different depths and widths.By analyzing the variation law of eddy current signals,characteristic parameters were obtained and a quantitative evaluation model for crack width and depth was established based on the back propagation(BP)neural network.Findings–Numerical simulation and experimental detection of eddy current signal change rule is basically consistent,based on the law of the selected characteristics of the parameters in the BP neural network crack quantitative evaluation model also has a certain degree of effectiveness and reliability.BP neural network training results show that the classification accuracy for different widths and depths of the classification is 100 and 85.71%,respectively,and can be effectively realized on the high-speed railway contact line cracks of the quantitative evaluation classification.Originality/value–This study establishes a new type of high-speed railway contact wire crack detection and identification method,which provides a new technical means for high-speed railway contact wire injury detection.The study of eddy current characteristic law and quantitative evaluation model for different cracks in contact line has important academic value and practical significance,and it has certain guiding significance for the detection technology of contact line in high-speed railway.展开更多
Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy cu...Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy current loss by cutting the angle of PM poles to change the shape of PM structure. Firstly, an analysis is conducted on the mechanism of PM synchronous high-speed motor eddy current loss production, the theoretical analytical model of PM eddy current loss is deduced, and it is theoretically proved that the magnetic pole shaving angle can reduce PM eddy current loss. Then, a 25 KW surface-type PM synchronous high-speed motor as an object, using two-dimensional time-step finite element method (FEM) to model and analyze PM eddy current loss. The results show that the smaller the PM pole shaving angle, the less its eddy current loss will be, it is possible to minimize the pole shaving angle of eddy current loss by 9.8% compared to the unshaved angle. Finally, the temperature field of the PM is calculated using a finite element method, and the outcomes demonstrate that the maximum temperature of the PM with a magnetic pole shaving angle can be reduced by about 5% compared with the unshaved angle.展开更多
The reliability of the eddy current testing (ECT) in flaw detection is quantitatively evaluated by theprobability of detection (POD). Precise and efficient modeling of POD gives direction for the implement of ECTon si...The reliability of the eddy current testing (ECT) in flaw detection is quantitatively evaluated by theprobability of detection (POD). Precise and efficient modeling of POD gives direction for the implement of ECTon sites to avoid false or missing flaw detection. Traditional POD analysis focuses on single uncertain factor orsingle response signal with limited credibility in engineering. This paper considers multiple response signals andmultiple flaw parameters to perform POD. The flaw length, the flaw depth, the coil impedance, and the magneticflux density are comprehensively studied under various lift-off distances. A finite element model (FEM) of ECT isestablished and verified with experiments to obtain sufficient simulation data for discrete POD modeling. Thecontinuous POD function is then fitted based on the discrete values to show the superiority of integrating multiplefactors. A comparison with conventional POD analysis further demonstrates the higher reliability of ECT flawdetection considering multiple flaw parameters and multiple response signals, especially for small flaws.展开更多
The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a prob...The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.展开更多
In eddy current testing, the law of attenuation of eddy current(EC) is of great concern. In conductive half space under the excitation of uniform magnetic field, the EC density decreases exponentially in the depth dir...In eddy current testing, the law of attenuation of eddy current(EC) is of great concern. In conductive half space under the excitation of uniform magnetic field, the EC density decreases exponentially in the depth direction. However, in conductor with finite thickness tested by coil, the distribution of EC in the depth direction is more complicated. This paper studies the characteristics of EC attenuation in metallic plate of finite thickness. Simulation results show that there is an EC reflection at the bottom of plate, which changes the law of EC attenuation. A new concept, namely the equivalent attenuation coefficient, is proposed to quantify the speed of EC attenuation. The characteristics of EC attenuation are utilized to explain the nonmonotonic relation between coil voltage and plate thickness. Procedure of selecting frequency is discussed. Thereafter, measurement of plate thickness is carried out and accurate result is obtained.展开更多
Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors....Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors. In this study, two indices based on the information entropy are proposed to evaluate the EC energyallocated in different directions. The EC vectors induced by a rotational field EC sensor varying in the timedomain are evaluated by the proposed methods. Then, the evaluating results are analyzed by the principle ofEC testing. It can be concluded that the two indices can effectively quantitatively evaluate the EC distributionsvarying in the time domain and are used to optimize the parameters of the rotational EC sensors.展开更多
A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special tec...A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast.展开更多
Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-kno...Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.展开更多
A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The pa...A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.展开更多
New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing fa...New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing factors includ-ing excitation frequency,lift-off distance,defect depth and size,residual heat,and surface roughness on the defect EC signals of an Inconel 738LC alloy produced by selective laser melting(SLM).The experimental investigations recorded the impedance amplitude and phase angle of EC signals for each defect to explore the feasibility of detecting sub-surface defects by merely analyzing these two key indicators.Overall,this study revealed preliminary qualitative and roughly quantitative relationships between influencing factors and corresponding EC signals,which provided a prac-tical reference on how to quantitively inspect subsurface defects using eddy current testing(ECT)on SLMed parts,and also made solid progress toward on-line ECT in additive/subtractive hybrid manufacturing(ASHM)for fabricating SLMed parts with enhanced quality and better performance.展开更多
A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC...A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The testresults show that this system has the advantage of fast scanning speed, different imaging mode andquantitative detection, it has a broad application in the aviation nondestructive testing.展开更多
The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacem...The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.展开更多
With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the uns...With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the unstable operating conditions brought by flexible operation.A vibration measuring method for the shrouded blades of a steam turbine based on eddy current sensors with high frequency response is proposed,meeting the requirements of non-contact heath monitoring.The eddy current sensors produce the signals which are related to the area changing of every blade’s shroud resulting from the rotation of stator.Then an improved blade tip timing(BTT)technique is proposed to detect the vibrations of shrouded blades by measuring the arrival time of each area changing signal.A structure of eddy current sensors is developed in steam turbines and an amplitude modulation/demodulation circuit is designed to improve the response bandwidth up to 250 kHz.Vibration tests for the last stage blades of a steam turbine were carried out and the results validate the efficiency of the improved BTT technique and the high frequency response of the eddy current sensors presented.展开更多
Bonded Terfenol-D composites,with high electrical resistivity and low eddy current loss,can be used in an alternating magnetic field with high frequency.However,the nonmagnetic binder impairs the magnetostriction of t...Bonded Terfenol-D composites,with high electrical resistivity and low eddy current loss,can be used in an alternating magnetic field with high frequency.However,the nonmagnetic binder impairs the magnetostriction of the composites.To achieve high magnetostriction and low eddy current loss,the mixture of the alloy powder and binder was compressed at low pressure in an oriented magnetic field.After this,the aligned samples were recompressed by cold isostatic pressing(CIP).Besides,the effect of particle size on the magnetostriction of the bonded Terfenol-D composites was also studied.The results showed that the bonded Terfenol-D composites had excellent magnetostriction when the particle size was 50-80 μm.The oriented magnetic field and CIP could improve the magnetostriction of the bonded composites,which reaches 1020×10-6.The bonded Terfenol-D composites had good compact structure and high density(7.24 g/cm3).The magnetic loss of the bonded Terfenol-D composites was 192 mW/cm3 at a frequency of 100 kHz in a magnetic field of 960 A/m,which was about one third of that of casting Terfenol-D alloys.展开更多
The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are ...The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.展开更多
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy curre...To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.展开更多
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0608100)the National Natural Science Foundation of China(62332017,U22A2022)
文摘In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.
基金Supported by Gansu Provincial Natural Science Foundation of China(Grant No.22JR5RA229)National Natural Science Foundation of China(Grant Nos.51807086,12162021)Hongliu Youth Found of Lanzhou University of Technology and Gansu Provincial Outstanding Graduate Student Innovation Star of China(Grant No.2021CXZX-453).
文摘A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including different coil structures,varies.In this study,two planar eddy current probes with differential pickup structures and the same size,Koch and circular probes,were used to compare lift-off effects.The eddy current distributions of the probes perturbed by 0°and 90°cracks were obtained by finite element analysis.The analysis results show that the 90°crack can impede the eddy current induced by the Koch probe even further at relatively low lift-off distance.The peak-to-peak values of the signal output from the two probes were compared at different lift-off distances using finite element analysis and experimental methods.In addition,the effects of different frequencies on the lift-off were studied experimentally.The results show that the signal peak-to-peak value of the Koch probe for the inspection of cracks in 90°orientation is larger than that of the circular probe when the lift-off distance is smaller than 1.2 mm.In addition,the influence of the lift-off distance on the peak-to-peak signal value of the two probes was studied via normalization.This indicates that the influence becomes more evident with an increase in excitation frequency.This research discloses the lift-off effect of differential planar eddy current probes with different coil shapes and proves the detection merit of the Koch probe for 90°cracks at low lift-off distances.
文摘Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs.
基金supported by the National Nature Science Foundation of China(Nos.62471206,52467002)。
文摘This study utilized finite element simulation and experimental methods to investigate the evolution of crack detection performanceof a flexible differential fractal Koch eddy current probe at different excitation frequencies as the lift-off distance increases.As the lift-off distanceincreased,the distribution shape of induced eddy currents changed,leading to reduced similarity in the shape of the excitation coil and an expandeddistribution range of induced eddy currents,ultimately resulting in weakened output signal strength.The experimental results showed that forexcitation frequencies of 10 kHz,20 kHz,50 kHz,100 kHz,200 kHz,500 kHz,and1000 kHz,the maximum lift distances of the real partof the output signal when cracks were detected were 5.0 mm,7.0 mm,8.0 mm,8.0 mm,8.0 mm,6.5 mm,and 4.0 mm,respectively.Theimaginary parts were 6.5 mm,6.5 mm,7.5 mm,5.5 mm,8.0 mm,6.5 mm,and 6.5 mm,respectively.
文摘Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of high-speed railway so as to provide a new way of thinking and method for the detection of contact wire injuries of high-speed railway.Design/methodology/approach–Based on the principle of eddy current detection and the specification parameters of high-speed railway contact wires in China,a finite element model for eddy current testing of contact wires was established to explore the variation patterns of crack signal characteristics in numerical simulation.A crack detection system based on eddy current detection was built,and eddy current detection voltage data was obtained for cracks of different depths and widths.By analyzing the variation law of eddy current signals,characteristic parameters were obtained and a quantitative evaluation model for crack width and depth was established based on the back propagation(BP)neural network.Findings–Numerical simulation and experimental detection of eddy current signal change rule is basically consistent,based on the law of the selected characteristics of the parameters in the BP neural network crack quantitative evaluation model also has a certain degree of effectiveness and reliability.BP neural network training results show that the classification accuracy for different widths and depths of the classification is 100 and 85.71%,respectively,and can be effectively realized on the high-speed railway contact line cracks of the quantitative evaluation classification.Originality/value–This study establishes a new type of high-speed railway contact wire crack detection and identification method,which provides a new technical means for high-speed railway contact wire injury detection.The study of eddy current characteristic law and quantitative evaluation model for different cracks in contact line has important academic value and practical significance,and it has certain guiding significance for the detection technology of contact line in high-speed railway.
文摘Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy current loss by cutting the angle of PM poles to change the shape of PM structure. Firstly, an analysis is conducted on the mechanism of PM synchronous high-speed motor eddy current loss production, the theoretical analytical model of PM eddy current loss is deduced, and it is theoretically proved that the magnetic pole shaving angle can reduce PM eddy current loss. Then, a 25 KW surface-type PM synchronous high-speed motor as an object, using two-dimensional time-step finite element method (FEM) to model and analyze PM eddy current loss. The results show that the smaller the PM pole shaving angle, the less its eddy current loss will be, it is possible to minimize the pole shaving angle of eddy current loss by 9.8% compared to the unshaved angle. Finally, the temperature field of the PM is calculated using a finite element method, and the outcomes demonstrate that the maximum temperature of the PM with a magnetic pole shaving angle can be reduced by about 5% compared with the unshaved angle.
基金supported by the Key Research and Development Project of Zhejiang Province(Grant No.2023C01248,2023C01069)and the National Natural Science Foundation of China(Grant No.52375135,52305137).
文摘The reliability of the eddy current testing (ECT) in flaw detection is quantitatively evaluated by theprobability of detection (POD). Precise and efficient modeling of POD gives direction for the implement of ECTon sites to avoid false or missing flaw detection. Traditional POD analysis focuses on single uncertain factor orsingle response signal with limited credibility in engineering. This paper considers multiple response signals andmultiple flaw parameters to perform POD. The flaw length, the flaw depth, the coil impedance, and the magneticflux density are comprehensively studied under various lift-off distances. A finite element model (FEM) of ECT isestablished and verified with experiments to obtain sufficient simulation data for discrete POD modeling. Thecontinuous POD function is then fitted based on the discrete values to show the superiority of integrating multiplefactors. A comparison with conventional POD analysis further demonstrates the higher reliability of ECT flawdetection considering multiple flaw parameters and multiple response signals, especially for small flaws.
文摘The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.
基金Supported by National Natural Science Foundation of China(Grant No.51277154)Xiamen Key Laboratory of Optoelectronic Transducer Technology+1 种基金Fujian Key Laboratory of Universities and Colleges for Transducer TechnologyInnovative Talents Program of Far East NDT New Technology&Application Forum
文摘In eddy current testing, the law of attenuation of eddy current(EC) is of great concern. In conductive half space under the excitation of uniform magnetic field, the EC density decreases exponentially in the depth direction. However, in conductor with finite thickness tested by coil, the distribution of EC in the depth direction is more complicated. This paper studies the characteristics of EC attenuation in metallic plate of finite thickness. Simulation results show that there is an EC reflection at the bottom of plate, which changes the law of EC attenuation. A new concept, namely the equivalent attenuation coefficient, is proposed to quantify the speed of EC attenuation. The characteristics of EC attenuation are utilized to explain the nonmonotonic relation between coil voltage and plate thickness. Procedure of selecting frequency is discussed. Thereafter, measurement of plate thickness is carried out and accurate result is obtained.
基金Foundation item:the National Natural Science Foundation of China(No.51807086)the Young Doctoral Fund of Education Department of Gansu Province(No.2021QB-047)the Hongliu Youth Fund of Lanzhou University of Technology(No.07/062003)。
文摘Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors. In this study, two indices based on the information entropy are proposed to evaluate the EC energyallocated in different directions. The EC vectors induced by a rotational field EC sensor varying in the timedomain are evaluated by the proposed methods. Then, the evaluating results are analyzed by the principle ofEC testing. It can be concluded that the two indices can effectively quantitatively evaluate the EC distributionsvarying in the time domain and are used to optimize the parameters of the rotational EC sensors.
文摘A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast.
基金State Key Program of Natural Science Foundation of China Under Grant No.50738002
文摘Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.
文摘A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.
基金Supported by Basic Research Project of Science and Technology Plan of Shenzhen(Grant No.JCYJ20170817111811303).
文摘New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing factors includ-ing excitation frequency,lift-off distance,defect depth and size,residual heat,and surface roughness on the defect EC signals of an Inconel 738LC alloy produced by selective laser melting(SLM).The experimental investigations recorded the impedance amplitude and phase angle of EC signals for each defect to explore the feasibility of detecting sub-surface defects by merely analyzing these two key indicators.Overall,this study revealed preliminary qualitative and roughly quantitative relationships between influencing factors and corresponding EC signals,which provided a prac-tical reference on how to quantitively inspect subsurface defects using eddy current testing(ECT)on SLMed parts,and also made solid progress toward on-line ECT in additive/subtractive hybrid manufacturing(ASHM)for fabricating SLMed parts with enhanced quality and better performance.
文摘A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The testresults show that this system has the advantage of fast scanning speed, different imaging mode andquantitative detection, it has a broad application in the aviation nondestructive testing.
文摘The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.
基金National Natural Science Foundation of China(No.51775377)National Key Research and Development Plan(No.2017YFF0204800)+2 种基金Natural Science Foundation of TianJin City(No.17JCQNJC01100)Young Elite Scientists Sponsorship Program by Cast of China(No.2016QNRC001)Open Project of Key Laboratory of Underwater Information and Control(No.6142218081811)
文摘With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the unstable operating conditions brought by flexible operation.A vibration measuring method for the shrouded blades of a steam turbine based on eddy current sensors with high frequency response is proposed,meeting the requirements of non-contact heath monitoring.The eddy current sensors produce the signals which are related to the area changing of every blade’s shroud resulting from the rotation of stator.Then an improved blade tip timing(BTT)technique is proposed to detect the vibrations of shrouded blades by measuring the arrival time of each area changing signal.A structure of eddy current sensors is developed in steam turbines and an amplitude modulation/demodulation circuit is designed to improve the response bandwidth up to 250 kHz.Vibration tests for the last stage blades of a steam turbine were carried out and the results validate the efficiency of the improved BTT technique and the high frequency response of the eddy current sensors presented.
基金supported by the National Natural Science Foundation of China (No.51004011 and 50874010)the Specialized Research Fund for the Doctoral Program of China Higher Education (No.20090006120012)
文摘Bonded Terfenol-D composites,with high electrical resistivity and low eddy current loss,can be used in an alternating magnetic field with high frequency.However,the nonmagnetic binder impairs the magnetostriction of the composites.To achieve high magnetostriction and low eddy current loss,the mixture of the alloy powder and binder was compressed at low pressure in an oriented magnetic field.After this,the aligned samples were recompressed by cold isostatic pressing(CIP).Besides,the effect of particle size on the magnetostriction of the bonded Terfenol-D composites was also studied.The results showed that the bonded Terfenol-D composites had excellent magnetostriction when the particle size was 50-80 μm.The oriented magnetic field and CIP could improve the magnetostriction of the bonded composites,which reaches 1020×10-6.The bonded Terfenol-D composites had good compact structure and high density(7.24 g/cm3).The magnetic loss of the bonded Terfenol-D composites was 192 mW/cm3 at a frequency of 100 kHz in a magnetic field of 960 A/m,which was about one third of that of casting Terfenol-D alloys.
基金Department of Science and Technology of Jiangsu Province,China(No. BE2003-46).
文摘The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z132013T001)
文摘To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.