In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh enviro...In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.展开更多
In eddy current testing, the law of attenuation of eddy current(EC) is of great concern. In conductive half space under the excitation of uniform magnetic field, the EC density decreases exponentially in the depth dir...In eddy current testing, the law of attenuation of eddy current(EC) is of great concern. In conductive half space under the excitation of uniform magnetic field, the EC density decreases exponentially in the depth direction. However, in conductor with finite thickness tested by coil, the distribution of EC in the depth direction is more complicated. This paper studies the characteristics of EC attenuation in metallic plate of finite thickness. Simulation results show that there is an EC reflection at the bottom of plate, which changes the law of EC attenuation. A new concept, namely the equivalent attenuation coefficient, is proposed to quantify the speed of EC attenuation. The characteristics of EC attenuation are utilized to explain the nonmonotonic relation between coil voltage and plate thickness. Procedure of selecting frequency is discussed. Thereafter, measurement of plate thickness is carried out and accurate result is obtained.展开更多
A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including differe...A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including different coil structures,varies.In this study,two planar eddy current probes with differential pickup structures and the same size,Koch and circular probes,were used to compare lift-off effects.The eddy current distributions of the probes perturbed by 0°and 90°cracks were obtained by finite element analysis.The analysis results show that the 90°crack can impede the eddy current induced by the Koch probe even further at relatively low lift-off distance.The peak-to-peak values of the signal output from the two probes were compared at different lift-off distances using finite element analysis and experimental methods.In addition,the effects of different frequencies on the lift-off were studied experimentally.The results show that the signal peak-to-peak value of the Koch probe for the inspection of cracks in 90°orientation is larger than that of the circular probe when the lift-off distance is smaller than 1.2 mm.In addition,the influence of the lift-off distance on the peak-to-peak signal value of the two probes was studied via normalization.This indicates that the influence becomes more evident with an increase in excitation frequency.This research discloses the lift-off effect of differential planar eddy current probes with different coil shapes and proves the detection merit of the Koch probe for 90°cracks at low lift-off distances.展开更多
Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors....Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors. In this study, two indices based on the information entropy are proposed to evaluate the EC energyallocated in different directions. The EC vectors induced by a rotational field EC sensor varying in the timedomain are evaluated by the proposed methods. Then, the evaluating results are analyzed by the principle ofEC testing. It can be concluded that the two indices can effectively quantitatively evaluate the EC distributionsvarying in the time domain and are used to optimize the parameters of the rotational EC sensors.展开更多
A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special tec...A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast.展开更多
Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-kno...Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.展开更多
A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The pa...A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.展开更多
New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing fa...New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing factors includ-ing excitation frequency,lift-off distance,defect depth and size,residual heat,and surface roughness on the defect EC signals of an Inconel 738LC alloy produced by selective laser melting(SLM).The experimental investigations recorded the impedance amplitude and phase angle of EC signals for each defect to explore the feasibility of detecting sub-surface defects by merely analyzing these two key indicators.Overall,this study revealed preliminary qualitative and roughly quantitative relationships between influencing factors and corresponding EC signals,which provided a prac-tical reference on how to quantitively inspect subsurface defects using eddy current testing(ECT)on SLMed parts,and also made solid progress toward on-line ECT in additive/subtractive hybrid manufacturing(ASHM)for fabricating SLMed parts with enhanced quality and better performance.展开更多
A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC...A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The testresults show that this system has the advantage of fast scanning speed, different imaging mode andquantitative detection, it has a broad application in the aviation nondestructive testing.展开更多
The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacem...The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.展开更多
With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the uns...With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the unstable operating conditions brought by flexible operation.A vibration measuring method for the shrouded blades of a steam turbine based on eddy current sensors with high frequency response is proposed,meeting the requirements of non-contact heath monitoring.The eddy current sensors produce the signals which are related to the area changing of every blade’s shroud resulting from the rotation of stator.Then an improved blade tip timing(BTT)technique is proposed to detect the vibrations of shrouded blades by measuring the arrival time of each area changing signal.A structure of eddy current sensors is developed in steam turbines and an amplitude modulation/demodulation circuit is designed to improve the response bandwidth up to 250 kHz.Vibration tests for the last stage blades of a steam turbine were carried out and the results validate the efficiency of the improved BTT technique and the high frequency response of the eddy current sensors presented.展开更多
The continuous eddy current pulse treatment(ECPT)combined with heat treatment was employed to heal the microcracks in spin formed Mg alloy tubes and improve their mechanical properties in this study.The results show t...The continuous eddy current pulse treatment(ECPT)combined with heat treatment was employed to heal the microcracks in spin formed Mg alloy tubes and improve their mechanical properties in this study.The results show that all the microcracks in different tube specimens were almost healed after different continuous ECPT schemes up to 15 cycles.The schemes with less cooling intervals exhibited better healing effect and increased the strength and elongation of Mg alloy tubes more obviously.After aging treatment,the strength improvement of the specimens with ECPT was more remarkable than that of the specimens without ECPT,and the elongation decrease of the specimens with ECPT was less evident than that of specimens without ECPT due to the segregation of RE elements on the crack surface.Besides,after solution treatment,the strength reduction and ductility improvement of the specimens with ECPT were more pronounced than that of the specimens without ECPT owing to the notable decrease of dislocation density of the specimens with ECPT.Both narrowed cracks induced by ECPT and the segregation of precipitates in the vicinity of microcrack surface during aging treatment contributed to the maximum strength in the as-spun specimens with ECPT followed by aging treatment.展开更多
In this paper,the subdomain analysis model of the eddy current brake(ECB)is established.By comparing with the finite element method,the accuracies of the subdomain model and the finite element model are verified.Furth...In this paper,the subdomain analysis model of the eddy current brake(ECB)is established.By comparing with the finite element method,the accuracies of the subdomain model and the finite element model are verified.Furthermore,the resistance characteristics of radial,axial,andHalbach arrays under impact load are calculated and compared.The axial array has a large braking force coefficient but low critical velocity.The radial array has a low braking force coefficient but high critical velocity.The Halbach array has the advantages of the first two arrays.Not only the braking force coefficient is large,but also the critical speed is high.The parameter analysis of the Halbach array is further carried out.The inner tube thickness and air gap length are the sensitive factors of resistance characteristics.The demagnetization effect is significantly enhanced by the increase of the inner tube thickness.In order to ensure that the ECB does not overheat,the electromagnetic-thermal coupling model is established based on the heat transfer theory.The temperature rise of the inner tube is obvious while that of the permanentmagnet is small.The temperature rise of the inner tube is more than 20 K each time,and that of the permanent magnet is less than 1 K each time.展开更多
Bonded Terfenol-D composites,with high electrical resistivity and low eddy current loss,can be used in an alternating magnetic field with high frequency.However,the nonmagnetic binder impairs the magnetostriction of t...Bonded Terfenol-D composites,with high electrical resistivity and low eddy current loss,can be used in an alternating magnetic field with high frequency.However,the nonmagnetic binder impairs the magnetostriction of the composites.To achieve high magnetostriction and low eddy current loss,the mixture of the alloy powder and binder was compressed at low pressure in an oriented magnetic field.After this,the aligned samples were recompressed by cold isostatic pressing(CIP).Besides,the effect of particle size on the magnetostriction of the bonded Terfenol-D composites was also studied.The results showed that the bonded Terfenol-D composites had excellent magnetostriction when the particle size was 50-80 μm.The oriented magnetic field and CIP could improve the magnetostriction of the bonded composites,which reaches 1020×10-6.The bonded Terfenol-D composites had good compact structure and high density(7.24 g/cm3).The magnetic loss of the bonded Terfenol-D composites was 192 mW/cm3 at a frequency of 100 kHz in a magnetic field of 960 A/m,which was about one third of that of casting Terfenol-D alloys.展开更多
The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are ...The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.展开更多
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy curre...To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.展开更多
The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being compos...The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being composed of two arbitrary oblique elliptical coils, which can change the electromagnetic concentrative region and the magnitude of eddy current density by changing the elliptical shape and/or spread angle between two elliptical coils. Pulsed current is usually the excitation source in the functional magnetic stimulation, so in this paper we derive the analytical solutions of transient pulsed eddy current field in the time domain due to the elliptical concentrative coil placed in an arbitrary position over a half-infinite plane conductor by making use of the scale-transformation, the Laplace transform and the Fourier transform are used in our derivation. Calculation results of field distributions produced by the figure-8-shaped elliptical coil show some behaviours as follows: 1) the eddy currents are focused on the conductor under the geometric symmetric centre of figure-8-shaped coil; 2) the greater the scale factor of ellipse is, the higher the eddy current density is and the wider the concentrative area of eddy current along y axis is; 3) the maximum magnitude of eddy current density increases with the increase of spread angle. When spread angle is 180°, there are two additional reverse concentrative areas on both sides of x axis.展开更多
As a common practice,a large hydro-generator will operate in leading phase conditions to absorb the reactive power of the power grid.However,the accurate and precise prediction of the leading phase operation capacity ...As a common practice,a large hydro-generator will operate in leading phase conditions to absorb the reactive power of the power grid.However,the accurate and precise prediction of the leading phase operation capacity of a large hydro-generator has always been a formidable challenge to engineers and academicians because it is extremely hard to compute the eddy currents and losses as well as the local overheating in the pressure plate and finger.To address this problem,a full three dimensional(3D)finite element model and method of the coupled eddy current and temperature fields in the end region of a large hydro-generator are developed.The equivalent medium parameters used in the computations are comprehensively discussed.Moreover,some numerically based solution methodologies for accurate computation of the field and armature currents under different leading phase conditions are proposed.Numerical results on the coupled eddy current and temperature fields in the end regions of a 250 MW hydro-generator confirm positively the feasibility of the present work.展开更多
Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quant...Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quantitatively monitor the crack characteristics near the bolt hole with fewer layers and coils,compared with the existing methods.The parallelogram coil array configuration is designed and optimized to improve the quantitative monitoring ability of the crack.A 3×3 parallelogram coil array is used to quantify the crack parameters of aluminum bolted joints.Finite element simulation and experiments show that the proposed parallelogram coil array could not only accurately and quantitatively identify the crack angle at the edge of the bolt hole,but also track the crack length along the radial direction of the bolt hole and the depth along the axial direction.展开更多
This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applicati...This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applications for small vehicles.Compared with the conventional round wire inserter method,the space factor can be improved and the coil-end length can be shortened by applying a so-called hairpin windings using a pre-formed into hairpin shape of bar conductor,and as a result,DC current resistance of the armature winding can be reduced.However,since the conductor cross-sectional area tends to increases,the conductor eddy current loss generated by the space harmonics linkage becomes too large to ignore.In order to study the reduction of the conductor eddy current loss,it is important to visualize the spatial leakage flux distribution which causes loss and finely analyze how the magnetic path is formed.Therefore,analysis of the conductor eddy current loss distribution generated in the bar-wound conductor is performed using the CAE model that faithfully reproduces the coil-end shape of the actual machine.Furthermore,it was qualitatively clarified what ratio of conductor eddy current loss at various driving points.Finally,the results of preliminary study on reduction of conductor eddy current loss are reported.展开更多
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0608100)the National Natural Science Foundation of China(62332017,U22A2022)
文摘In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.
基金Supported by National Natural Science Foundation of China(Grant No.51277154)Xiamen Key Laboratory of Optoelectronic Transducer Technology+1 种基金Fujian Key Laboratory of Universities and Colleges for Transducer TechnologyInnovative Talents Program of Far East NDT New Technology&Application Forum
文摘In eddy current testing, the law of attenuation of eddy current(EC) is of great concern. In conductive half space under the excitation of uniform magnetic field, the EC density decreases exponentially in the depth direction. However, in conductor with finite thickness tested by coil, the distribution of EC in the depth direction is more complicated. This paper studies the characteristics of EC attenuation in metallic plate of finite thickness. Simulation results show that there is an EC reflection at the bottom of plate, which changes the law of EC attenuation. A new concept, namely the equivalent attenuation coefficient, is proposed to quantify the speed of EC attenuation. The characteristics of EC attenuation are utilized to explain the nonmonotonic relation between coil voltage and plate thickness. Procedure of selecting frequency is discussed. Thereafter, measurement of plate thickness is carried out and accurate result is obtained.
基金Supported by Gansu Provincial Natural Science Foundation of China(Grant No.22JR5RA229)National Natural Science Foundation of China(Grant Nos.51807086,12162021)Hongliu Youth Found of Lanzhou University of Technology and Gansu Provincial Outstanding Graduate Student Innovation Star of China(Grant No.2021CXZX-453).
文摘A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including different coil structures,varies.In this study,two planar eddy current probes with differential pickup structures and the same size,Koch and circular probes,were used to compare lift-off effects.The eddy current distributions of the probes perturbed by 0°and 90°cracks were obtained by finite element analysis.The analysis results show that the 90°crack can impede the eddy current induced by the Koch probe even further at relatively low lift-off distance.The peak-to-peak values of the signal output from the two probes were compared at different lift-off distances using finite element analysis and experimental methods.In addition,the effects of different frequencies on the lift-off were studied experimentally.The results show that the signal peak-to-peak value of the Koch probe for the inspection of cracks in 90°orientation is larger than that of the circular probe when the lift-off distance is smaller than 1.2 mm.In addition,the influence of the lift-off distance on the peak-to-peak signal value of the two probes was studied via normalization.This indicates that the influence becomes more evident with an increase in excitation frequency.This research discloses the lift-off effect of differential planar eddy current probes with different coil shapes and proves the detection merit of the Koch probe for 90°cracks at low lift-off distances.
基金Foundation item:the National Natural Science Foundation of China(No.51807086)the Young Doctoral Fund of Education Department of Gansu Province(No.2021QB-047)the Hongliu Youth Fund of Lanzhou University of Technology(No.07/062003)。
文摘Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors. In this study, two indices based on the information entropy are proposed to evaluate the EC energyallocated in different directions. The EC vectors induced by a rotational field EC sensor varying in the timedomain are evaluated by the proposed methods. Then, the evaluating results are analyzed by the principle ofEC testing. It can be concluded that the two indices can effectively quantitatively evaluate the EC distributionsvarying in the time domain and are used to optimize the parameters of the rotational EC sensors.
文摘A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast.
基金State Key Program of Natural Science Foundation of China Under Grant No.50738002
文摘Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.
文摘A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.
基金Supported by Basic Research Project of Science and Technology Plan of Shenzhen(Grant No.JCYJ20170817111811303).
文摘New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing factors includ-ing excitation frequency,lift-off distance,defect depth and size,residual heat,and surface roughness on the defect EC signals of an Inconel 738LC alloy produced by selective laser melting(SLM).The experimental investigations recorded the impedance amplitude and phase angle of EC signals for each defect to explore the feasibility of detecting sub-surface defects by merely analyzing these two key indicators.Overall,this study revealed preliminary qualitative and roughly quantitative relationships between influencing factors and corresponding EC signals,which provided a prac-tical reference on how to quantitively inspect subsurface defects using eddy current testing(ECT)on SLMed parts,and also made solid progress toward on-line ECT in additive/subtractive hybrid manufacturing(ASHM)for fabricating SLMed parts with enhanced quality and better performance.
文摘A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The testresults show that this system has the advantage of fast scanning speed, different imaging mode andquantitative detection, it has a broad application in the aviation nondestructive testing.
文摘The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.
基金National Natural Science Foundation of China(No.51775377)National Key Research and Development Plan(No.2017YFF0204800)+2 种基金Natural Science Foundation of TianJin City(No.17JCQNJC01100)Young Elite Scientists Sponsorship Program by Cast of China(No.2016QNRC001)Open Project of Key Laboratory of Underwater Information and Control(No.6142218081811)
文摘With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the unstable operating conditions brought by flexible operation.A vibration measuring method for the shrouded blades of a steam turbine based on eddy current sensors with high frequency response is proposed,meeting the requirements of non-contact heath monitoring.The eddy current sensors produce the signals which are related to the area changing of every blade’s shroud resulting from the rotation of stator.Then an improved blade tip timing(BTT)technique is proposed to detect the vibrations of shrouded blades by measuring the arrival time of each area changing signal.A structure of eddy current sensors is developed in steam turbines and an amplitude modulation/demodulation circuit is designed to improve the response bandwidth up to 250 kHz.Vibration tests for the last stage blades of a steam turbine were carried out and the results validate the efficiency of the improved BTT technique and the high frequency response of the eddy current sensors presented.
基金the National Natural Science Foundation of China(Nos.51775137 and 51635005)。
文摘The continuous eddy current pulse treatment(ECPT)combined with heat treatment was employed to heal the microcracks in spin formed Mg alloy tubes and improve their mechanical properties in this study.The results show that all the microcracks in different tube specimens were almost healed after different continuous ECPT schemes up to 15 cycles.The schemes with less cooling intervals exhibited better healing effect and increased the strength and elongation of Mg alloy tubes more obviously.After aging treatment,the strength improvement of the specimens with ECPT was more remarkable than that of the specimens without ECPT,and the elongation decrease of the specimens with ECPT was less evident than that of specimens without ECPT due to the segregation of RE elements on the crack surface.Besides,after solution treatment,the strength reduction and ductility improvement of the specimens with ECPT were more pronounced than that of the specimens without ECPT owing to the notable decrease of dislocation density of the specimens with ECPT.Both narrowed cracks induced by ECPT and the segregation of precipitates in the vicinity of microcrack surface during aging treatment contributed to the maximum strength in the as-spun specimens with ECPT followed by aging treatment.
基金supported by the National Natural Science Foundation of China(Grant No.51705253).
文摘In this paper,the subdomain analysis model of the eddy current brake(ECB)is established.By comparing with the finite element method,the accuracies of the subdomain model and the finite element model are verified.Furthermore,the resistance characteristics of radial,axial,andHalbach arrays under impact load are calculated and compared.The axial array has a large braking force coefficient but low critical velocity.The radial array has a low braking force coefficient but high critical velocity.The Halbach array has the advantages of the first two arrays.Not only the braking force coefficient is large,but also the critical speed is high.The parameter analysis of the Halbach array is further carried out.The inner tube thickness and air gap length are the sensitive factors of resistance characteristics.The demagnetization effect is significantly enhanced by the increase of the inner tube thickness.In order to ensure that the ECB does not overheat,the electromagnetic-thermal coupling model is established based on the heat transfer theory.The temperature rise of the inner tube is obvious while that of the permanentmagnet is small.The temperature rise of the inner tube is more than 20 K each time,and that of the permanent magnet is less than 1 K each time.
基金supported by the National Natural Science Foundation of China (No.51004011 and 50874010)the Specialized Research Fund for the Doctoral Program of China Higher Education (No.20090006120012)
文摘Bonded Terfenol-D composites,with high electrical resistivity and low eddy current loss,can be used in an alternating magnetic field with high frequency.However,the nonmagnetic binder impairs the magnetostriction of the composites.To achieve high magnetostriction and low eddy current loss,the mixture of the alloy powder and binder was compressed at low pressure in an oriented magnetic field.After this,the aligned samples were recompressed by cold isostatic pressing(CIP).Besides,the effect of particle size on the magnetostriction of the bonded Terfenol-D composites was also studied.The results showed that the bonded Terfenol-D composites had excellent magnetostriction when the particle size was 50-80 μm.The oriented magnetic field and CIP could improve the magnetostriction of the bonded composites,which reaches 1020×10-6.The bonded Terfenol-D composites had good compact structure and high density(7.24 g/cm3).The magnetic loss of the bonded Terfenol-D composites was 192 mW/cm3 at a frequency of 100 kHz in a magnetic field of 960 A/m,which was about one third of that of casting Terfenol-D alloys.
基金Department of Science and Technology of Jiangsu Province,China(No. BE2003-46).
文摘The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z132013T001)
文摘To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50807001)
文摘The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being composed of two arbitrary oblique elliptical coils, which can change the electromagnetic concentrative region and the magnitude of eddy current density by changing the elliptical shape and/or spread angle between two elliptical coils. Pulsed current is usually the excitation source in the functional magnetic stimulation, so in this paper we derive the analytical solutions of transient pulsed eddy current field in the time domain due to the elliptical concentrative coil placed in an arbitrary position over a half-infinite plane conductor by making use of the scale-transformation, the Laplace transform and the Fourier transform are used in our derivation. Calculation results of field distributions produced by the figure-8-shaped elliptical coil show some behaviours as follows: 1) the eddy currents are focused on the conductor under the geometric symmetric centre of figure-8-shaped coil; 2) the greater the scale factor of ellipse is, the higher the eddy current density is and the wider the concentrative area of eddy current along y axis is; 3) the maximum magnitude of eddy current density increases with the increase of spread angle. When spread angle is 180°, there are two additional reverse concentrative areas on both sides of x axis.
文摘As a common practice,a large hydro-generator will operate in leading phase conditions to absorb the reactive power of the power grid.However,the accurate and precise prediction of the leading phase operation capacity of a large hydro-generator has always been a formidable challenge to engineers and academicians because it is extremely hard to compute the eddy currents and losses as well as the local overheating in the pressure plate and finger.To address this problem,a full three dimensional(3D)finite element model and method of the coupled eddy current and temperature fields in the end region of a large hydro-generator are developed.The equivalent medium parameters used in the computations are comprehensively discussed.Moreover,some numerically based solution methodologies for accurate computation of the field and armature currents under different leading phase conditions are proposed.Numerical results on the coupled eddy current and temperature fields in the end regions of a 250 MW hydro-generator confirm positively the feasibility of the present work.
基金supported by the Natural Science Foundation of China(No.11902280)Aeronautical Science Fund(No.20200033068001)+1 种基金Innovation Fosundation for Young Scholar of Xiamen(No.3502Z20206042)the Fundamental Research Funds for the Central Universities(No.20720210049)。
文摘Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quantitatively monitor the crack characteristics near the bolt hole with fewer layers and coils,compared with the existing methods.The parallelogram coil array configuration is designed and optimized to improve the quantitative monitoring ability of the crack.A 3×3 parallelogram coil array is used to quantify the crack parameters of aluminum bolted joints.Finite element simulation and experiments show that the proposed parallelogram coil array could not only accurately and quantitatively identify the crack angle at the edge of the bolt hole,but also track the crack length along the radial direction of the bolt hole and the depth along the axial direction.
文摘This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applications for small vehicles.Compared with the conventional round wire inserter method,the space factor can be improved and the coil-end length can be shortened by applying a so-called hairpin windings using a pre-formed into hairpin shape of bar conductor,and as a result,DC current resistance of the armature winding can be reduced.However,since the conductor cross-sectional area tends to increases,the conductor eddy current loss generated by the space harmonics linkage becomes too large to ignore.In order to study the reduction of the conductor eddy current loss,it is important to visualize the spatial leakage flux distribution which causes loss and finely analyze how the magnetic path is formed.Therefore,analysis of the conductor eddy current loss distribution generated in the bar-wound conductor is performed using the CAE model that faithfully reproduces the coil-end shape of the actual machine.Furthermore,it was qualitatively clarified what ratio of conductor eddy current loss at various driving points.Finally,the results of preliminary study on reduction of conductor eddy current loss are reported.