Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed...Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs.展开更多
The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migr...The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures.展开更多
As environmental concerns from fossil fuel consumption intensify,large-scale energy storage becomes imperative for the integration of renewable sources like wind,hydro,and solar with the electrical grid.Redox flow bat...As environmental concerns from fossil fuel consumption intensify,large-scale energy storage becomes imperative for the integration of renewable sources like wind,hydro,and solar with the electrical grid.Redox flow batteries,particularly those employing organic molecules,are positioned as a key technology for this purpose.This review explores the growing field of symmetric organic redox flow batteries(ORFBs)within this context.Unlike traditional asymmetric designs based on unique active materials for each electrode,symmetric ORFBs involve a single bipolar species for both electrodes.This review highlights the benefits of a symmetric design,and categorizes five distinct classes of organic bipolar molecules used in both aqueous and non-aqueous solvents.By providing a comprehensive overview of their cell cycling and performance characteristics,the strengths and weaknesses of the diverse categories of bipolar molecules are highlighted for both solvent systems,as are opportunities for future development.This should guide new research directions and advance the development of practical symmetric ORFBs.展开更多
The sluggish ion transport and deteriorating electrode-electrolyte interphase hinder the performance of lithium-ion batteries under wide temperature operation,thereby posing substantial challenges in improving both hi...The sluggish ion transport and deteriorating electrode-electrolyte interphase hinder the performance of lithium-ion batteries under wide temperature operation,thereby posing substantial challenges in improving both high-voltage and high-rate performance.Herein,the competitive ion-molecule-coordinated interactions(Li+-anion-solvent-diluent)achieve a balance that directs an anion-dominated and moderate diluent-interacting solvation structure,resulting in an excellent wide-temperature electrolyte with electrochemical stability up to 5.4 V and high Li-ion conductivity(1.034 mS/cm at-60℃).The corresponding NCM811||Li cells exhibit capacity retention ratios of 90.74%after 200 cycles at-40℃ and 54.68%for 250 cycles at 70℃.Additionally,the cell achieves stable cycling performance at a high rate of 10 C at 25℃.Notably,the assembled NCM811||Graphite pouch battery(3 Ah)can be operated at-106℃ and possesses 2.6 Ah at-30℃,with 90.28%capacity retention after 90 cycles and stable cycling performance at 50℃.This work provides a new design principle for electrolyte,which may expedite the development of ultra-wide-temperature lithium-ion batteries.展开更多
基金supported by the National Natural Science Foundation of China(52203066,51973157,61904123)Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金Tianjin Research Innovation Project for Postgraduate Students(2021YJSB234)Science and Technology Plans of Tianjin(19PTSYJC00010)Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs.
基金funding from the Natural Science Foundation of Hubei Province,China(Grant No.2022CFA031)supported by the Natural Science Foundation of China(Grant No.22309056).
文摘The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures.
基金Natural Sciences and Engineering Research Council(NSERC)of Canada(RGPIN-2022-03488)New Brunswick Innovation Foundation(NBIF)。
文摘As environmental concerns from fossil fuel consumption intensify,large-scale energy storage becomes imperative for the integration of renewable sources like wind,hydro,and solar with the electrical grid.Redox flow batteries,particularly those employing organic molecules,are positioned as a key technology for this purpose.This review explores the growing field of symmetric organic redox flow batteries(ORFBs)within this context.Unlike traditional asymmetric designs based on unique active materials for each electrode,symmetric ORFBs involve a single bipolar species for both electrodes.This review highlights the benefits of a symmetric design,and categorizes five distinct classes of organic bipolar molecules used in both aqueous and non-aqueous solvents.By providing a comprehensive overview of their cell cycling and performance characteristics,the strengths and weaknesses of the diverse categories of bipolar molecules are highlighted for both solvent systems,as are opportunities for future development.This should guide new research directions and advance the development of practical symmetric ORFBs.
基金supported by the National Natural Science Foundation of China(52377220)the Natural Science Foundation of Changsha,Hunan Province,China(kq2208265)the State Key Laboratory of Powder Metallurgy at Central South University,and the High Performance Computing Center of Central South University。
文摘The sluggish ion transport and deteriorating electrode-electrolyte interphase hinder the performance of lithium-ion batteries under wide temperature operation,thereby posing substantial challenges in improving both high-voltage and high-rate performance.Herein,the competitive ion-molecule-coordinated interactions(Li+-anion-solvent-diluent)achieve a balance that directs an anion-dominated and moderate diluent-interacting solvation structure,resulting in an excellent wide-temperature electrolyte with electrochemical stability up to 5.4 V and high Li-ion conductivity(1.034 mS/cm at-60℃).The corresponding NCM811||Li cells exhibit capacity retention ratios of 90.74%after 200 cycles at-40℃ and 54.68%for 250 cycles at 70℃.Additionally,the cell achieves stable cycling performance at a high rate of 10 C at 25℃.Notably,the assembled NCM811||Graphite pouch battery(3 Ah)can be operated at-106℃ and possesses 2.6 Ah at-30℃,with 90.28%capacity retention after 90 cycles and stable cycling performance at 50℃.This work provides a new design principle for electrolyte,which may expedite the development of ultra-wide-temperature lithium-ion batteries.