Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions ...Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.展开更多
In recent years,soil acidification has been expanding in many areas of Asia due to increasing reactive nitrogen inputs and industrial activities,which may seriously affect the performance of various ecosystem function...In recent years,soil acidification has been expanding in many areas of Asia due to increasing reactive nitrogen inputs and industrial activities,which may seriously affect the performance of various ecosystem functions.However,the underlying patterns and processes of ecosystem multifunctionality(EMF)are largely unknown at different levels of pH,limiting our understanding of how EMF respond to drivers.This study aims to explore threshold of pH on changes in EMF and differences in the drivers for the changes in EMF on either side of each of the determined pH thresholds.We collected nutrient and environmental databases for raster-level sampling data,totaling 4,000 sampling points.Averaging and cluster-multiple-threshold approach were used to calculate EMF,then quadratic and generalized additive models and Mann-Whitney U were used to determine and test the pH thresholds for changes in EMF,structural equation modellings and variance partitioning analysis were used to explore the main drivers on changes in EMF.The pH threshold for EMF changes in Chinese terrestrial ecosystems is 6.0.When pH<6.0,climate was consistently more important in controlling the variation of EMF than other variables;when pH≥6.0,soil was consistently more important in controlling the variation of EMF than other variables.Specifically,when pH<6.0,mean annual temperature was the main factor in regulating the EMF variation;when pH≥6.0,soil moisture was the main factor in regulating the EMF variation.Our study provides important scientific value for the mechanism of maintaining EMF under global change.For example,with further increases in global nitrogen deposition,leading to increased soil acidification,there are different impacts on EMF in different regions.It may lead to a decrease in EMF in acidic soils and an increase in EMF in alkaline soils.This suggests different management strategies for different regions to maintain EMF stability in the context of future global changes.In the future,more attention should be paid to the biological mechanisms regulating EMF.展开更多
Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lackin...Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.展开更多
Mixed-species plantations generally exhibit higher ecosystem multifunctionality than monospecific plantations.However,it is unclear how tree species functional composition influences species mixture effects on ecosyst...Mixed-species plantations generally exhibit higher ecosystem multifunctionality than monospecific plantations.However,it is unclear how tree species functional composition influences species mixture effects on ecosystem multifunctionality.We selected 171 monospecific and mixed-species plantations from nine regions across subtropical China,and quantified 13 key ecosystem functional properties to investigate how species mixture effects on ecosystem multifunctionality are modulated by functional diversity and identity.We found that ecosystem multifunctionality was significantly higher(p<0.05)in mixed tree plantations than in monospecific plantations except the mixed-conifer species plantations.Across all regions,ecosystem multifunctionality was significantly higher(p<0.05)in mixed conifer-broadleaf plantations than in monospecific plantations of the corresponding species,but not different between mixed and monospecific coniferous plantations.The magnitude of species mixture effects on ecosystem multifunctionality varied greatly with tree species compositions.Taking Cunninghamia lanceolata Lamb.as an example,the effects varied from a range of 2.0%–9.6%when mixed with a conifer species to 36%–87%when mixed with a broadleaf species.The functional diversity was the dominate driver shaping ecosystem multifunctionality,while functional identity,as expressed by community-weighted mean of specific leaf area,also had a positive effect on ecosystem multifunctionality through the increased below-ground nitrogen and phosphorus stocks regulated by specific leaf area of the mixing tree species.Our study highlights the important role of functional diversity in shaping ecosystem multifunctionality across region-wide environmental conditions.Mixed conifer-broadleaf tree plantations with distinct functional traits benefit the enhancement of ecosystem multifunctionality,and the magnitude of species mixture effects is modulated by the functional identity of tree species composition;those relationships deserve a special consideration in multifunctional management context of subtropical plantations.展开更多
Owing to the joint effects of ecosystem fragility,anthropogenic disturbance and climate change,alpine grasslands(alpine meadow,alpine steppe and alpine desert)have experienced serious degradation during the past sever...Owing to the joint effects of ecosystem fragility,anthropogenic disturbance and climate change,alpine grasslands(alpine meadow,alpine steppe and alpine desert)have experienced serious degradation during the past several decades.Grasslands degradation has severely affected the delivery of ecosystem multifunctionality(EMF)and services,and then threatens the livelihood of local herdsmen and ecological security of China.However,we still lack comprehensive insights about the effects of degradation and climatic factors on EMF of alpine grasslands,especially for alpine desert ecosystem.Therefore,we applied a large-scale field investigation to answer this question.Our results suggested grassland degradation significantly decreased the belowground ecosystem multifunctionality(BEMF)and EMF of alpine grasslands and aboveground ecosystem multifunctionality(AEMF)of alpine meadow,while did not reduce the AEMF of alpine steppe and desert.Except for the insignificant difference between degraded steppe and degraded desert in AEMF,the alpine meadow showed the highest AEMF,BEMF and EMF,alpine steppe ranked the second and alpine desert was the lowest.AEMF,BEMF and EMF of health alpine grasslands were strongly affected by mean annual precipitation(MAP)(19%-51%)and mean annual temperature(MAT)(9%-36%),while those of degraded meadow and degraded desert were not impacted by precipitation and temperature.AEMF and BEMF showed a synergistic relationship in healthy alpine grasslands(12%-28%),but not in degraded grasslands.Our findings emphasized the urgency of implementing the feasible ecological restoration project to mitigate the negative influences of grassland degradation on EMF of alpine ecosystems.展开更多
Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycli...Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycling,soil carbon stocks,decomposition,and wood production)to five selective logging intensities in a Pinus yunnanensisdominated forest.We included a control group with no harvest to evaluate the potential shifts in EMF of the P.yunnanensis forests.We also assessed the relationship between above-and belowground biodiversity and EMF under these different selective logging intensities.Additionally,we evaluated the effects of biotic and abiotic factors on EMF using a structural equation modeling(SEM)approach.Results:Individual ecosystem functions(EFs)all had a significant positive correlation with selective logging intensity.Different EFs showed different patterns with the increase of selective logging intensity.We found that EMF tended to increase with logging intensity,and that EMF significantly improved when the stand was harvested at least twice.Both functional diversity and soil moisture had a significant positive correlation with EMF,but soil fungal operational taxonomic units(OTUs)had a significant negative correlation with EMF.Based on SEM,we found that selective logging improved EMF mainly by increasing functional diversity.Conclusion:Our study demonstrates that selective logging is a good management technique from an EMF perspective,and thus provide us with potential guidelines to improve forest management in P.yunnanensis forests in this region.The functional diversity is maximized through reasonable selective logging measures,so as to enhance EMF.展开更多
Background Mixed forests are better than monoculture forests in biodiversity, stand structure and productivity stability. However, a more comprehensive assessment of the ecosystem functions of monoculture and mixed pl...Background Mixed forests are better than monoculture forests in biodiversity, stand structure and productivity stability. However, a more comprehensive assessment of the ecosystem functions of monoculture and mixed plantations is lacking. We compared the single functions and ecosystem multifunctionality(EMF) in Fraxinus mandshurica and Larix olgensis mixed plantations with monoculture plantations in Northeast China and discussed the influences of biodiversity and environmental factors on EMF.Results The mixed plantations had higher biodiversity and ecological functions. Biodiversity was significantly higher in mixed plantations(such as CWMMH, Shrub.Shannon, Shrub.Richness, Herb.Shannon, Herb.Richness), but environmental factors differed less among the three forest types, and belowground diversity differed significantly only in the Bacterial.Shannon and Fungal.Shannon. Mixed plantations showed significant differences in single ecological functions relative to monoculture plantations, with more pronounced differences between mixed plantations and Larix olgensis monoculture plantations. Weighted ecosystem multifunctionality was significantly higher in mixed plantations than in monoculture plantations. EMF was mainly driven by tree diversity, environmental factors, shrub and herb species diversity, and soil microbial alpha diversity, which explained 25.35%, 8.94%, 8.83%, and 7.65% of the variation, respectively.Conclusions The establishment of mixed plantations can increase the biodiversity of forest stands and improve the ecosystem functions. These results highlight the advantages of multi-species plantations and the necessity of planting them. They are important for the conservation of biodiversity and the sustainable management of plantations.展开更多
Aims Biodiversity is often positively related to the capacity of an ecosystem to provide multiple functions simultaneously(i.e.multifunctionality).However,there is some controversy over whether biodiversity–multifunc...Aims Biodiversity is often positively related to the capacity of an ecosystem to provide multiple functions simultaneously(i.e.multifunctionality).However,there is some controversy over whether biodiversity–multifunctionality relationships depend on the number of functions considered.Particularly,investigators have documented contrasting findings that the effects of biodiversity on ecosystem multifunctionality do not change or increase with the number of ecosystem functions.Here,we provide some clarity on this issue by examining the statistical underpinnings of different multifunctionality metrics.Methods We used simulations and data from a variety of empirical studies conducted across spatial scales(from local to global)and biomes(temperate and alpine grasslands,forests and drylands).We revisited three methods to quantify multifunctionality including the averaging approach,summing approach and threshold-based approach.Important Findings Biodiversity–multifunctionality relationships either did not change or increased as more functions were considered.These results were best explained by the statistical underpinnings of the averaging and summing multifunctionality metrics.Specifically,by averaging the individual ecosystem functions,the biodiversity–multifunctionality relationships equal the population mean of biodiversity-single function relationships,and thus will not change with the number of functions.Likewise,by summing the individual ecosystem functions,the strength of biodiversity–multifunctionality relationships increases as the number of functions increased.We proposed a scaling standardization method by converting the averaging or summing metrics into a scaling metric,which would make comparisons among different biodiversity studies.In addition,we showed that the range-relevant standardization can be applied to the threshold-based approach by solving for the mathematical artefact of the approach(i.e.the effects of biodiversity may artificially increase with the number of functions considered).Our study highlights different approaches yield different results and that it is essential to develop an understanding of the statistical underpinnings of different approaches.The standardization methods provide a prospective way of comparing biodiversity–multifunctionality relationships across studies.展开更多
There is little experimental field evidence on how multiple essential land use intensification drivers(LUIDs),such as nitrogen(N)fertilization and mowing,interact to control ecosystem multifunctionality.Here,we conduc...There is little experimental field evidence on how multiple essential land use intensification drivers(LUIDs),such as nitrogen(N)fertilization and mowing,interact to control ecosystem multifunctionality.Here,we conducted a 4-year field experiment in a meadow steppe in northeast China and evaluated the direct and indirect effects of mowing and N fertilization on a range of ecosystemfunctions associated with nutrient cycle,carbon stocks,and organic matter decomposition during the past 2 years of the experiment(2017 and 2018).Mowing had negative effects on the ecosystem multifunctionality index(EMF),carbon(C)cycle multifunctionality index(CCMF),and N cycle multifunctionality index(NCMF)in 2 years of sampling.However,in general,the responses of multifunctionality to N fertilization were ratespecific and year-dependent.N fertilization had positive effects on EMF,CCMF,NCMF,and phosphorus(P)cycle multifunctionality index(PCMF)in 2017,with the higher precipitation rate during the growing season,which was likely associated with the strong monsoon season.However,in 2018,EMF,CCMF,and NCMF increased at the lower N fertilization levels(£10 g N m^(-2) yr^(-1)),but decreased at higher N rates.N fertilization had consistent positive effects on PCMF in the 2 years of sampling.The effects of land use drivers on multifunctionality were indirectly influenced by bacterial biomass,plant richness,and soil moisture changes.Our results also indicated that the impacts of land use drivers on multifunctionality played an important role in maintaining a range of functions at low levels of functioning(<50% functional threshold).Low N fertilization levels(£10 g N m^(-2) yr^(-1))were able to reduce the negative effects of mowing on ecosystem multifunctionality while promoting plant biomass(food for livestock)and C storage.These findings are useful for designing practical strategies toward promoting multifunctionality by managing multiple LUIDs in a meadow steppe.展开更多
Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships...Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships in forests are largely unknown.This is particularly evident for the macroscale of a large forested landscape.Methods:Based on 412 one-tenth hectare field plots distributed over forested areas across northeastern China,we evaluated three alternative hypotheses explaining the relationships between BEMF,namely:niche complementarity,mass ratio,and vegetation quantity effect.We used Rao's quadratic entropy and community weighted mean trait values to quantify forest“biodiversity”.These two variables represent two complementary aspects of functional properties,which are in line with niche complementary and mass ratio effects,respectively.Results:Ecosystem multifunctionality was negatively associated with the community weighted mean values of acquisitive traits(a proxy of mass ratio effect).Rao's quadratic entropy(a proxy of niche complementarity)had no relationship with ecosystem multifunctionality.Higher stand biomass greatly increased ecosystem multifunctionality,which is in line with the vegetation quantity effect.Our results confirm that in the temperate forests of northeastern China,the relationship of BEMF was primarily affected by vegetation quantity,followed by mass ratio effects.Conclusions:The results of this study contribute to a better understanding of the main drivers of ecosystem multifunctionality in forest ecosystems.The results of this study provide additional evidence to support the vegetation quantity and mass ratio hypotheses in forest ecosystems.展开更多
As the most abundant living entities in the environment,viruses have been well recognized as crucial members in sustaining biogeochemical cycling.However,the significance of viruses in soil ecosystem multifunctionalit...As the most abundant living entities in the environment,viruses have been well recognized as crucial members in sustaining biogeochemical cycling.However,the significance of viruses in soil ecosystem multifunctionality remains under-explored.In this study,we used metagenomics and meta-viromics analysis to investigate the role of soil viruses in soil ecosystem functions under heavy,light,and no organochlorine pesticides(OCPs)contamination.In the three types of soil samples collected,lightcontaminated soils supported the highest level of multifunctionality,followed by heavy-contaminated soils and clean soils.Additionally,our results revealed a positive correlation between bacterial community evenness and multifunctionality index(p<0.05).Dominant bacterial species with biodegradation and stress resistance advantages exhibited higher abundance in OCPaffected soils,potentially playing a core functional supporting role.Furthermore,our results indicated that the species richness and diversity of bacteriophages were positively correlated with multifunctionality(p<0.05)in OCP-affected soils.Bacteriophages in OCP-affected soils regulate host metabolism and enhance soil ecosystem multifunctionality by infecting functional bacterial hosts and encoding AMGs related to soil element cycling.Our findings emphasize the potential effect of phages on ecosystem multifunctionality in contaminated soil,suggesting that phages may serve as contributors to soil ecology beyond bacteria and other microorganisms.Therefore,in polluted or constrained soils,further research could potentially translate phage communities and related ecological processes into artificial methods for application in soil pollution remediation or ecological restoration.展开更多
基金supported by the Fundamental Research Funds of Chinese Academy of Forestry(Nos.CAFYBB2022SY037,CAFYBB2021ZA002 and CAFYBB2022QC002)the Basic Research Foundation of Yunnan Province(Grant No.202201AT070264).
文摘Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.
基金This work was supported by the Tianshan Programme of Excellence(2022TSYCCX0001)the National Key Program for Basic Research and Development(973 Program)(2012CB417101)。
文摘In recent years,soil acidification has been expanding in many areas of Asia due to increasing reactive nitrogen inputs and industrial activities,which may seriously affect the performance of various ecosystem functions.However,the underlying patterns and processes of ecosystem multifunctionality(EMF)are largely unknown at different levels of pH,limiting our understanding of how EMF respond to drivers.This study aims to explore threshold of pH on changes in EMF and differences in the drivers for the changes in EMF on either side of each of the determined pH thresholds.We collected nutrient and environmental databases for raster-level sampling data,totaling 4,000 sampling points.Averaging and cluster-multiple-threshold approach were used to calculate EMF,then quadratic and generalized additive models and Mann-Whitney U were used to determine and test the pH thresholds for changes in EMF,structural equation modellings and variance partitioning analysis were used to explore the main drivers on changes in EMF.The pH threshold for EMF changes in Chinese terrestrial ecosystems is 6.0.When pH<6.0,climate was consistently more important in controlling the variation of EMF than other variables;when pH≥6.0,soil was consistently more important in controlling the variation of EMF than other variables.Specifically,when pH<6.0,mean annual temperature was the main factor in regulating the EMF variation;when pH≥6.0,soil moisture was the main factor in regulating the EMF variation.Our study provides important scientific value for the mechanism of maintaining EMF under global change.For example,with further increases in global nitrogen deposition,leading to increased soil acidification,there are different impacts on EMF in different regions.It may lead to a decrease in EMF in acidic soils and an increase in EMF in alkaline soils.This suggests different management strategies for different regions to maintain EMF stability in the context of future global changes.In the future,more attention should be paid to the biological mechanisms regulating EMF.
基金financially supported by the third xinjiang scientific expedition program (grant no.2022xjkk0901)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA2006030102)the National Natural Sciences Foundation of China(No.42171068 and No.42330503)。
文摘Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.
基金funded by the National Natural Science Foundation of China (No. 31930078)the National Key Research and Development Program of China (No. 2021YFD2200405)
文摘Mixed-species plantations generally exhibit higher ecosystem multifunctionality than monospecific plantations.However,it is unclear how tree species functional composition influences species mixture effects on ecosystem multifunctionality.We selected 171 monospecific and mixed-species plantations from nine regions across subtropical China,and quantified 13 key ecosystem functional properties to investigate how species mixture effects on ecosystem multifunctionality are modulated by functional diversity and identity.We found that ecosystem multifunctionality was significantly higher(p<0.05)in mixed tree plantations than in monospecific plantations except the mixed-conifer species plantations.Across all regions,ecosystem multifunctionality was significantly higher(p<0.05)in mixed conifer-broadleaf plantations than in monospecific plantations of the corresponding species,but not different between mixed and monospecific coniferous plantations.The magnitude of species mixture effects on ecosystem multifunctionality varied greatly with tree species compositions.Taking Cunninghamia lanceolata Lamb.as an example,the effects varied from a range of 2.0%–9.6%when mixed with a conifer species to 36%–87%when mixed with a broadleaf species.The functional diversity was the dominate driver shaping ecosystem multifunctionality,while functional identity,as expressed by community-weighted mean of specific leaf area,also had a positive effect on ecosystem multifunctionality through the increased below-ground nitrogen and phosphorus stocks regulated by specific leaf area of the mixing tree species.Our study highlights the important role of functional diversity in shaping ecosystem multifunctionality across region-wide environmental conditions.Mixed conifer-broadleaf tree plantations with distinct functional traits benefit the enhancement of ecosystem multifunctionality,and the magnitude of species mixture effects is modulated by the functional identity of tree species composition;those relationships deserve a special consideration in multifunctional management context of subtropical plantations.
基金financially supported by the grants from the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0307)the National Key R&D Program of China(2016YFC0501906)+1 种基金Key R&D Program of Qinghai Province(2019-SF-145 and 2018-NK-A2)Qinghaiinnovation platform construction project(2017-ZJY20)。
文摘Owing to the joint effects of ecosystem fragility,anthropogenic disturbance and climate change,alpine grasslands(alpine meadow,alpine steppe and alpine desert)have experienced serious degradation during the past several decades.Grasslands degradation has severely affected the delivery of ecosystem multifunctionality(EMF)and services,and then threatens the livelihood of local herdsmen and ecological security of China.However,we still lack comprehensive insights about the effects of degradation and climatic factors on EMF of alpine grasslands,especially for alpine desert ecosystem.Therefore,we applied a large-scale field investigation to answer this question.Our results suggested grassland degradation significantly decreased the belowground ecosystem multifunctionality(BEMF)and EMF of alpine grasslands and aboveground ecosystem multifunctionality(AEMF)of alpine meadow,while did not reduce the AEMF of alpine steppe and desert.Except for the insignificant difference between degraded steppe and degraded desert in AEMF,the alpine meadow showed the highest AEMF,BEMF and EMF,alpine steppe ranked the second and alpine desert was the lowest.AEMF,BEMF and EMF of health alpine grasslands were strongly affected by mean annual precipitation(MAP)(19%-51%)and mean annual temperature(MAT)(9%-36%),while those of degraded meadow and degraded desert were not impacted by precipitation and temperature.AEMF and BEMF showed a synergistic relationship in healthy alpine grasslands(12%-28%),but not in degraded grasslands.Our findings emphasized the urgency of implementing the feasible ecological restoration project to mitigate the negative influences of grassland degradation on EMF of alpine ecosystems.
基金the Fundamental Research Funds of CAF(CAFYBB2017ZX002)Yunnan Basic Research Program(2019FB058).
文摘Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycling,soil carbon stocks,decomposition,and wood production)to five selective logging intensities in a Pinus yunnanensisdominated forest.We included a control group with no harvest to evaluate the potential shifts in EMF of the P.yunnanensis forests.We also assessed the relationship between above-and belowground biodiversity and EMF under these different selective logging intensities.Additionally,we evaluated the effects of biotic and abiotic factors on EMF using a structural equation modeling(SEM)approach.Results:Individual ecosystem functions(EFs)all had a significant positive correlation with selective logging intensity.Different EFs showed different patterns with the increase of selective logging intensity.We found that EMF tended to increase with logging intensity,and that EMF significantly improved when the stand was harvested at least twice.Both functional diversity and soil moisture had a significant positive correlation with EMF,but soil fungal operational taxonomic units(OTUs)had a significant negative correlation with EMF.Based on SEM,we found that selective logging improved EMF mainly by increasing functional diversity.Conclusion:Our study demonstrates that selective logging is a good management technique from an EMF perspective,and thus provide us with potential guidelines to improve forest management in P.yunnanensis forests in this region.The functional diversity is maximized through reasonable selective logging measures,so as to enhance EMF.
基金The Joint Funds for Regional Innovation and Development of the National Natural Science Foundation of China(No.U21A20244)the National Key R&D Program of China(No.2022YFD2201001).
文摘Background Mixed forests are better than monoculture forests in biodiversity, stand structure and productivity stability. However, a more comprehensive assessment of the ecosystem functions of monoculture and mixed plantations is lacking. We compared the single functions and ecosystem multifunctionality(EMF) in Fraxinus mandshurica and Larix olgensis mixed plantations with monoculture plantations in Northeast China and discussed the influences of biodiversity and environmental factors on EMF.Results The mixed plantations had higher biodiversity and ecological functions. Biodiversity was significantly higher in mixed plantations(such as CWMMH, Shrub.Shannon, Shrub.Richness, Herb.Shannon, Herb.Richness), but environmental factors differed less among the three forest types, and belowground diversity differed significantly only in the Bacterial.Shannon and Fungal.Shannon. Mixed plantations showed significant differences in single ecological functions relative to monoculture plantations, with more pronounced differences between mixed plantations and Larix olgensis monoculture plantations. Weighted ecosystem multifunctionality was significantly higher in mixed plantations than in monoculture plantations. EMF was mainly driven by tree diversity, environmental factors, shrub and herb species diversity, and soil microbial alpha diversity, which explained 25.35%, 8.94%, 8.83%, and 7.65% of the variation, respectively.Conclusions The establishment of mixed plantations can increase the biodiversity of forest stands and improve the ecosystem functions. These results highlight the advantages of multi-species plantations and the necessity of planting them. They are important for the conservation of biodiversity and the sustainable management of plantations.
基金supported by the National Natural Science Foundation of China(31600428)to X.J.a Semper Ardens grant from Carlsberg Foundation to N.J.S.F.T.M.the global drylands dataset were supported by the European Research Council(ERC Grant Agreements 242658[BIOCOM]and 647038[BIODESERT]).
文摘Aims Biodiversity is often positively related to the capacity of an ecosystem to provide multiple functions simultaneously(i.e.multifunctionality).However,there is some controversy over whether biodiversity–multifunctionality relationships depend on the number of functions considered.Particularly,investigators have documented contrasting findings that the effects of biodiversity on ecosystem multifunctionality do not change or increase with the number of ecosystem functions.Here,we provide some clarity on this issue by examining the statistical underpinnings of different multifunctionality metrics.Methods We used simulations and data from a variety of empirical studies conducted across spatial scales(from local to global)and biomes(temperate and alpine grasslands,forests and drylands).We revisited three methods to quantify multifunctionality including the averaging approach,summing approach and threshold-based approach.Important Findings Biodiversity–multifunctionality relationships either did not change or increased as more functions were considered.These results were best explained by the statistical underpinnings of the averaging and summing multifunctionality metrics.Specifically,by averaging the individual ecosystem functions,the biodiversity–multifunctionality relationships equal the population mean of biodiversity-single function relationships,and thus will not change with the number of functions.Likewise,by summing the individual ecosystem functions,the strength of biodiversity–multifunctionality relationships increases as the number of functions increased.We proposed a scaling standardization method by converting the averaging or summing metrics into a scaling metric,which would make comparisons among different biodiversity studies.In addition,we showed that the range-relevant standardization can be applied to the threshold-based approach by solving for the mathematical artefact of the approach(i.e.the effects of biodiversity may artificially increase with the number of functions considered).Our study highlights different approaches yield different results and that it is essential to develop an understanding of the statistical underpinnings of different approaches.The standardization methods provide a prospective way of comparing biodiversity–multifunctionality relationships across studies.
基金supported by the National Key Research and Development Program of China(2016YFC0500602)the National Natural Science Foundation of China(31570470,31870456)+4 种基金the Fundamental Research Funds for the Central Universities(2412018ZD010)the Program of Introducing Talents of Discipline to Universities(B16011)supported by the Spanish Government under Ramon y Cajal(RYC2018-025483-I)support from a Large Research Grant from the British Ecological Society(Grant Agreement No.LRA17\1193,MUSGONET)support from Chinese Scholarship Council(CSC).
文摘There is little experimental field evidence on how multiple essential land use intensification drivers(LUIDs),such as nitrogen(N)fertilization and mowing,interact to control ecosystem multifunctionality.Here,we conducted a 4-year field experiment in a meadow steppe in northeast China and evaluated the direct and indirect effects of mowing and N fertilization on a range of ecosystemfunctions associated with nutrient cycle,carbon stocks,and organic matter decomposition during the past 2 years of the experiment(2017 and 2018).Mowing had negative effects on the ecosystem multifunctionality index(EMF),carbon(C)cycle multifunctionality index(CCMF),and N cycle multifunctionality index(NCMF)in 2 years of sampling.However,in general,the responses of multifunctionality to N fertilization were ratespecific and year-dependent.N fertilization had positive effects on EMF,CCMF,NCMF,and phosphorus(P)cycle multifunctionality index(PCMF)in 2017,with the higher precipitation rate during the growing season,which was likely associated with the strong monsoon season.However,in 2018,EMF,CCMF,and NCMF increased at the lower N fertilization levels(£10 g N m^(-2) yr^(-1)),but decreased at higher N rates.N fertilization had consistent positive effects on PCMF in the 2 years of sampling.The effects of land use drivers on multifunctionality were indirectly influenced by bacterial biomass,plant richness,and soil moisture changes.Our results also indicated that the impacts of land use drivers on multifunctionality played an important role in maintaining a range of functions at low levels of functioning(<50% functional threshold).Low N fertilization levels(£10 g N m^(-2) yr^(-1))were able to reduce the negative effects of mowing on ecosystem multifunctionality while promoting plant biomass(food for livestock)and C storage.These findings are useful for designing practical strategies toward promoting multifunctionality by managing multiple LUIDs in a meadow steppe.
基金supported by the Program of National Natural Science Foundation of China(No.31971650)the Key Project of National Key Research and Development Plan(No.2017YFC0504005)the National Natural Science Foundation of China(No.31800362).
文摘Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships in forests are largely unknown.This is particularly evident for the macroscale of a large forested landscape.Methods:Based on 412 one-tenth hectare field plots distributed over forested areas across northeastern China,we evaluated three alternative hypotheses explaining the relationships between BEMF,namely:niche complementarity,mass ratio,and vegetation quantity effect.We used Rao's quadratic entropy and community weighted mean trait values to quantify forest“biodiversity”.These two variables represent two complementary aspects of functional properties,which are in line with niche complementary and mass ratio effects,respectively.Results:Ecosystem multifunctionality was negatively associated with the community weighted mean values of acquisitive traits(a proxy of mass ratio effect).Rao's quadratic entropy(a proxy of niche complementarity)had no relationship with ecosystem multifunctionality.Higher stand biomass greatly increased ecosystem multifunctionality,which is in line with the vegetation quantity effect.Our results confirm that in the temperate forests of northeastern China,the relationship of BEMF was primarily affected by vegetation quantity,followed by mass ratio effects.Conclusions:The results of this study contribute to a better understanding of the main drivers of ecosystem multifunctionality in forest ecosystems.The results of this study provide additional evidence to support the vegetation quantity and mass ratio hypotheses in forest ecosystems.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077106,42277115,and 42177113)the Key R&D Project of Jiangsu Province(Modern Agriculture,Grant No.BE2022322)the Fundamental Research Funds for the Central Universities(Grant No.YDZX2023023).
文摘As the most abundant living entities in the environment,viruses have been well recognized as crucial members in sustaining biogeochemical cycling.However,the significance of viruses in soil ecosystem multifunctionality remains under-explored.In this study,we used metagenomics and meta-viromics analysis to investigate the role of soil viruses in soil ecosystem functions under heavy,light,and no organochlorine pesticides(OCPs)contamination.In the three types of soil samples collected,lightcontaminated soils supported the highest level of multifunctionality,followed by heavy-contaminated soils and clean soils.Additionally,our results revealed a positive correlation between bacterial community evenness and multifunctionality index(p<0.05).Dominant bacterial species with biodegradation and stress resistance advantages exhibited higher abundance in OCPaffected soils,potentially playing a core functional supporting role.Furthermore,our results indicated that the species richness and diversity of bacteriophages were positively correlated with multifunctionality(p<0.05)in OCP-affected soils.Bacteriophages in OCP-affected soils regulate host metabolism and enhance soil ecosystem multifunctionality by infecting functional bacterial hosts and encoding AMGs related to soil element cycling.Our findings emphasize the potential effect of phages on ecosystem multifunctionality in contaminated soil,suggesting that phages may serve as contributors to soil ecology beyond bacteria and other microorganisms.Therefore,in polluted or constrained soils,further research could potentially translate phage communities and related ecological processes into artificial methods for application in soil pollution remediation or ecological restoration.