The study on restoration and rebuilding of forestry ecological system was conducted on Xianfeng Forestry Farm (N45° 03′, E129° 45′), in Yilan county, Heilongjiang province. One thousand hectare sample land...The study on restoration and rebuilding of forestry ecological system was conducted on Xianfeng Forestry Farm (N45° 03′, E129° 45′), in Yilan county, Heilongjiang province. One thousand hectare sample land was established. The research summarized the comprehensive technique measures: to managed virgin forests perfectly, to promote forest reforestation by artificial treatment, to restore the secondary forest with patch pattern; and to restorc and foster felling land on artificial forest by means of natural pattern or close hillside to facilitate afforestation. The results showed that forest ecosystem function and quality were restored and rebuilt during ten years by utilization of these technique measures.展开更多
This paper deals with a Lotka-Volterra ecological competition system with cubic functional responses and diffusion. We consider the stability of semitrivial solutions by using spectrum analysis. Taking the growth rate...This paper deals with a Lotka-Volterra ecological competition system with cubic functional responses and diffusion. We consider the stability of semitrivial solutions by using spectrum analysis. Taking the growth rate as a bifurcation parameter and using the bifurcation theory, we discuss the existence and stability of the bifurcating solutions which emanate from the semi-trivial solutions.展开更多
In this paper, by using the qualitative method, we study a class of Kolmogorov 's ecological system with prey having constant adding rate, discuss the relative position and the character of the equilibriums, the g...In this paper, by using the qualitative method, we study a class of Kolmogorov 's ecological system with prey having constant adding rate, discuss the relative position and the character of the equilibriums, the global stability of the practical equilibriums and give a group of conditions for the boundedness of the solutions, the nonexistence, the existence and the uniqueness of the limit cycle of the system. Most results obtained in papers [1] and [2] are included or generalized.展开更多
The status quo of Ningxia Ningdong Energy-Chemical Base was introduced first, and the ecological civilization and low-carbon economy of Ningxia Ningdong Energy-Chemical Base were analyzed. Problems in the exploitation...The status quo of Ningxia Ningdong Energy-Chemical Base was introduced first, and the ecological civilization and low-carbon economy of Ningxia Ningdong Energy-Chemical Base were analyzed. Problems in the exploitation of resources in Ningxia Ningdong Energy-Chemical Base, and major factors which restrain the development, were discussed. Countermeasures were put forward at last.展开更多
Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of per...Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units.展开更多
Developing digital culture industries is one of the important social planning strategies in China in the new era.China’s digital culture industries has continued to grow in recent years,but there are still a series o...Developing digital culture industries is one of the important social planning strategies in China in the new era.China’s digital culture industries has continued to grow in recent years,but there are still a series of problems such as imperfect industrial ecological chain structure,lack of development and innovation content,and small scale of ecological platform.At this stage,in order to build a sustainable ecological system for the development of digital culture industries in the new era,we should focus on the development of key areas related to digital culture industries,guide the development of industrial agglomeration,cultivate large-scale leading enterprises,strengthen the support of industry chain,build an innovative ecological model,and increase policy support.Only in this way can the digital culture industries be pushed into a benign ecological system as soon as possible and cultivated into a new momentum for the development of China’s culture industries in the new era.展开更多
In research [1], the authors investigate the dynamic behaviors of a discrete ecological system. The period-double bifurcations and chaos are found in the system. But no strategy is proposed to control the chaos. It is...In research [1], the authors investigate the dynamic behaviors of a discrete ecological system. The period-double bifurcations and chaos are found in the system. But no strategy is proposed to control the chaos. It is well known that chaos control is the first step of utilizing chaos. In this paper, a controller is designed to stabilize the chaotic orbits and enable them to be an ideal target one. After that, numerical simulations are presented to show the correctness of theoretical analysis.展开更多
The coastal zone ecological restoration project has successfully restored a cumulative shoreline length of 76 km in Fanhe Harbor and Kaozhou Bay ecological restoration shoreline (mangrove forest) located in Huidong Co...The coastal zone ecological restoration project has successfully restored a cumulative shoreline length of 76 km in Fanhe Harbor and Kaozhou Bay ecological restoration shoreline (mangrove forest) located in Huidong County, Huizhou City. Additionally, 5 619.5 m of artificial shoreline has been developed as part of the ecological restoration efforts. Various methods, including UAV remote sensing, orthophoto acquisition, and analysis using ArcGIS software, were employed to assess the length, width, coverage, and other relevant indicators of the newly established ecologically restored shoreline. The findings indicate that the average width, coverage, and ecosystem stability of mangrove forests in the restored area satisfy the criteria for the acceptance of ecological shoreline restoration. Furthermore, a relatively stable ecosystem has been established for over two years. This study offers a scientific foundation for the ecological restoration of mangrove forests and holds considerable significance for the conservation and utilization of mangrove forest resources.展开更多
Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to...Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to encompass broader considerations such as ecosystem stability, community resilience to climate change, and enhancement of human well-being. Given these multifaceted objectives, it is imperative to judiciously allocate resources to effectively conserve biodiversity by identifying strategically significant areas for conservation, particularly for mountainous areas. In this study, we evaluated the representativeness of the protected area network in the Qin ling Mountains concerning species diversity, ecosystem services, climate stability and ecological stability. The results indicate that some of the ecological indicators are spatially correlated with topographic gradient effects. The conservation priority areas predominantly lie in the northern foothills, the southeastern, and southwestern parts of the Qinling Mountain with areas concentrated at altitudes between 1,500-2,000 m and slopes between 40°-50° as hotspots. The conservation priority areas identified through the framework of inclusive conservation optimization account for 22.9 % of the Qinling Mountain. Existing protected areas comprise only 6.1 % of the Qinling Mountain and 13.18 % of the conservation priority areas. This will play an important role in achiev ing sustainable development in the region and in meeting the post-2020 biodiversity target. The framework can advance the different objectives of achieving a quadruple win and can also be extended to other regions.展开更多
Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security ...Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security of the Loess Plateau(LP) by integrating ecosystem health and ecosystem services, explores the varying impacts of ecosystem structure, quality, and services on ecological security index(ESI), and identifies the key driving factors of ESI using the Geodetector model. The results show that:(1) the average ESI indicates a relatively safe ecological status in LP with a significant increase in ESI observed in 50.21% of the region, largely due to the ecological restoration programs.(2) Natural factors predominantly influence ESI, although human factors play a significant role in the earthy-rocky mountain region and plateau wind-sand region.(3) The interactions between driving factors have a much greater impact on ESI than any single factor, with the interactions between precipitation and human factors being the most influential combination. This study provides a novel perspective on assessing ecological security in LP. We recommend that future ecological restoration efforts should consider the varying roles of ecosystem structure, quality, and services in ESI while tailoring strategies to the primary driving factors based on local conditions.展开更多
Urbanization and environmental degradation have led to significant declines in water quality and aquatic ecosystem health,highlighting the urgent need for effective restoration efforts.This study applies an integrated...Urbanization and environmental degradation have led to significant declines in water quality and aquatic ecosystem health,highlighting the urgent need for effective restoration efforts.This study applies an integrated analysis approach to estimate the economic value and benefits of improvements in water quality and aquatic ecosystem services resulting from the Ecological Stream Restoration Project.Using survey data analyzed through the choice experiment(CE)method,we assessed respondents’preferences for various ecosystem services,including water-friendly services,ecological functions,water-level control,and water-quality purification.Three empirical analysis models—the Conditional Logit Model(CLM),Nested Logit Model(NL),and Error Component Logit Model(ECL)—were applied,with the ECL model identified as the most suitable for this study.From the physical impact assessment,we derived compensating variations to estimate the annual economic benefits of the project.The estimated annual economic value of water quality improvement due to the Anyangcheon Ecological Stream Restoration Project ranged from approximately KRW 10.54 billion to KRW 21.44 billion,while the economic value of aquatic ecosystem improvement was estimated to range from KRW 6.05 billion to KRW 12.30 billion annually.This study provides analytic framework that can inform future ecological restoration projects and sustainable water management policies.展开更多
Against the backdrop of intensifying global water scarcity,reclaimed water reuse has emerged as a critical strategy for ecological replenishment of landscape water bodies.However,its potential ecological risks remain ...Against the backdrop of intensifying global water scarcity,reclaimed water reuse has emerged as a critical strategy for ecological replenishment of landscape water bodies.However,its potential ecological risks remain underexplored.This study aims to establish a multidimensional ecological safety evaluation framework for reclaimed water replenishment systems and propose hierarchical risk prevention strategies.By integrating ecotoxicological assays(algae growth inhibition,Daphnia behavioral anomalies,zebrafish embryo toxicity),multimedia exposure modeling,and Monte Carlo probabilistic simulations,the risk contributions and spatial heterogeneity of typical pollutants are quantitatively analyzed.Results revealed that sulfamethoxazole(RQ=2.3)and diclofenac(RQ=1.8)posed high ecological risks,with their effects nonlinearly correlated with hydraulic retention time(HRT<3 days)and nutrient loading(TN>1.2 mg/L).A three-tier risk prevention system was developed based on the“source-pathway-receptor”framework:ozone-activated carbon pretreatment achieved 85%removal efficiency for pharmaceutical contaminants,ecological floating beds enhanced nitrogen and phosphorus retention by 40%-60%,and hydraulic regulation(flow velocity>0.1 m/s)effectively suppressed pathogen proliferation.The innovation of this study lies in establishing a chemical-biological-hydrological coupled risk quantification model for reclaimed water reuse scenarios.The hierarchical prevention standards have been incorporated into local reclaimed water management regulations,providing a scientific foundation and technical paradigm for sustainable landscape water replenishment.展开更多
The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the regio...The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.展开更多
Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In th...Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.展开更多
Green development has gradually become the main theme of the current world economic development.Green transformation development and cracking the contradiction between ecology and economy need to build an effective ec...Green development has gradually become the main theme of the current world economic development.Green transformation development and cracking the contradiction between ecology and economy need to build an effective ecological capital operation system and mechanism to support,encourage the effective operation of regional ecological capital,promote the appreciation and preservation of ecological capital,and escort the operation.This paper constructs a four-in-one regional ecological capital operation mechanism system,in which the"accumulation mechanism"is the prerequisite,the"conversion mechanism"is the key link,the"compensation mechanism"is an important supplement,and the"incentive mechanism"is the safeguard measure,which aims to ensure the smooth progress of the construction of beautiful China in the new era and realize the socialist modern power.展开更多
This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expan...This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.展开更多
Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and t...Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making.展开更多
Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoti...Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.展开更多
The ecological environmental safety of health resorts can prevent premature depletion of medical natural resources and avoid being polluted.In CNKI,Wanfang Database,Google Academic,Web of Science,and Pub Med database,...The ecological environmental safety of health resorts can prevent premature depletion of medical natural resources and avoid being polluted.In CNKI,Wanfang Database,Google Academic,Web of Science,and Pub Med database,Chinese search terms“health resort”,“convalescence”,“ecological environment”,“ecological safety protection”,“evaluation”,as well as English search terms“health resort”,“convalescence”,“ecological environment”,“ecological safety and security”,and“estimation”were searched,and a total of 33 articles were screened.The basic information of the 33 articles was recorded,and the types of evaluation models,evaluation indicators and indicator thresholds were summarized.The future development direction was proposed,and the enlightenment to the management and protection of health resorts was summarized.展开更多
This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking an...This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.展开更多
文摘The study on restoration and rebuilding of forestry ecological system was conducted on Xianfeng Forestry Farm (N45° 03′, E129° 45′), in Yilan county, Heilongjiang province. One thousand hectare sample land was established. The research summarized the comprehensive technique measures: to managed virgin forests perfectly, to promote forest reforestation by artificial treatment, to restore the secondary forest with patch pattern; and to restorc and foster felling land on artificial forest by means of natural pattern or close hillside to facilitate afforestation. The results showed that forest ecosystem function and quality were restored and rebuilt during ten years by utilization of these technique measures.
基金supported partly by the NSF (10971124,11001160) of ChinaNSC (972628-M-110-003-MY3) (Taiwan)the Fundamental Research Funds (GK201002046) for the Central Universities
文摘This paper deals with a Lotka-Volterra ecological competition system with cubic functional responses and diffusion. We consider the stability of semitrivial solutions by using spectrum analysis. Taking the growth rate as a bifurcation parameter and using the bifurcation theory, we discuss the existence and stability of the bifurcating solutions which emanate from the semi-trivial solutions.
基金This paper was financially supported by the Chinese National Youth Natural Science Funds.
文摘In this paper, by using the qualitative method, we study a class of Kolmogorov 's ecological system with prey having constant adding rate, discuss the relative position and the character of the equilibriums, the global stability of the practical equilibriums and give a group of conditions for the boundedness of the solutions, the nonexistence, the existence and the uniqueness of the limit cycle of the system. Most results obtained in papers [1] and [2] are included or generalized.
文摘The status quo of Ningxia Ningdong Energy-Chemical Base was introduced first, and the ecological civilization and low-carbon economy of Ningxia Ningdong Energy-Chemical Base were analyzed. Problems in the exploitation of resources in Ningxia Ningdong Energy-Chemical Base, and major factors which restrain the development, were discussed. Countermeasures were put forward at last.
基金supported by grants from the National Natural Science Foundation of China (Grant No. 41571523, and Grant No. 41661144038)the National Basic Research Program of China(Grant No. 2013CBA01808)the National Key Technology R&D Program of the Ministry of Science and Technology of China (Grant No. 2014BAC05B01)
文摘Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units.
文摘Developing digital culture industries is one of the important social planning strategies in China in the new era.China’s digital culture industries has continued to grow in recent years,but there are still a series of problems such as imperfect industrial ecological chain structure,lack of development and innovation content,and small scale of ecological platform.At this stage,in order to build a sustainable ecological system for the development of digital culture industries in the new era,we should focus on the development of key areas related to digital culture industries,guide the development of industrial agglomeration,cultivate large-scale leading enterprises,strengthen the support of industry chain,build an innovative ecological model,and increase policy support.Only in this way can the digital culture industries be pushed into a benign ecological system as soon as possible and cultivated into a new momentum for the development of China’s culture industries in the new era.
文摘In research [1], the authors investigate the dynamic behaviors of a discrete ecological system. The period-double bifurcations and chaos are found in the system. But no strategy is proposed to control the chaos. It is well known that chaos control is the first step of utilizing chaos. In this paper, a controller is designed to stabilize the chaotic orbits and enable them to be an ideal target one. After that, numerical simulations are presented to show the correctness of theoretical analysis.
文摘The coastal zone ecological restoration project has successfully restored a cumulative shoreline length of 76 km in Fanhe Harbor and Kaozhou Bay ecological restoration shoreline (mangrove forest) located in Huidong County, Huizhou City. Additionally, 5 619.5 m of artificial shoreline has been developed as part of the ecological restoration efforts. Various methods, including UAV remote sensing, orthophoto acquisition, and analysis using ArcGIS software, were employed to assess the length, width, coverage, and other relevant indicators of the newly established ecologically restored shoreline. The findings indicate that the average width, coverage, and ecosystem stability of mangrove forests in the restored area satisfy the criteria for the acceptance of ecological shoreline restoration. Furthermore, a relatively stable ecosystem has been established for over two years. This study offers a scientific foundation for the ecological restoration of mangrove forests and holds considerable significance for the conservation and utilization of mangrove forest resources.
基金supported by the National Natural Science Foun-dation of China(Grant No.72349002).
文摘Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to encompass broader considerations such as ecosystem stability, community resilience to climate change, and enhancement of human well-being. Given these multifaceted objectives, it is imperative to judiciously allocate resources to effectively conserve biodiversity by identifying strategically significant areas for conservation, particularly for mountainous areas. In this study, we evaluated the representativeness of the protected area network in the Qin ling Mountains concerning species diversity, ecosystem services, climate stability and ecological stability. The results indicate that some of the ecological indicators are spatially correlated with topographic gradient effects. The conservation priority areas predominantly lie in the northern foothills, the southeastern, and southwestern parts of the Qinling Mountain with areas concentrated at altitudes between 1,500-2,000 m and slopes between 40°-50° as hotspots. The conservation priority areas identified through the framework of inclusive conservation optimization account for 22.9 % of the Qinling Mountain. Existing protected areas comprise only 6.1 % of the Qinling Mountain and 13.18 % of the conservation priority areas. This will play an important role in achiev ing sustainable development in the region and in meeting the post-2020 biodiversity target. The framework can advance the different objectives of achieving a quadruple win and can also be extended to other regions.
基金National Natural Science Foundation of China,No.42371103Natural Science Basic Research Plan in Shaanxi Province of China,No.2023-JC-YB-229。
文摘Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security of the Loess Plateau(LP) by integrating ecosystem health and ecosystem services, explores the varying impacts of ecosystem structure, quality, and services on ecological security index(ESI), and identifies the key driving factors of ESI using the Geodetector model. The results show that:(1) the average ESI indicates a relatively safe ecological status in LP with a significant increase in ESI observed in 50.21% of the region, largely due to the ecological restoration programs.(2) Natural factors predominantly influence ESI, although human factors play a significant role in the earthy-rocky mountain region and plateau wind-sand region.(3) The interactions between driving factors have a much greater impact on ESI than any single factor, with the interactions between precipitation and human factors being the most influential combination. This study provides a novel perspective on assessing ecological security in LP. We recommend that future ecological restoration efforts should consider the varying roles of ecosystem structure, quality, and services in ESI while tailoring strategies to the primary driving factors based on local conditions.
基金funded by Korea Environmental Industry&Technology Institute(KEITI)through Wetland Ecosystem Value Evaluation and Carbon Absorption Value Promotion Technology Development Project of Korea Ministry of Environment(MOE)(RS-2022-KE002025).
文摘Urbanization and environmental degradation have led to significant declines in water quality and aquatic ecosystem health,highlighting the urgent need for effective restoration efforts.This study applies an integrated analysis approach to estimate the economic value and benefits of improvements in water quality and aquatic ecosystem services resulting from the Ecological Stream Restoration Project.Using survey data analyzed through the choice experiment(CE)method,we assessed respondents’preferences for various ecosystem services,including water-friendly services,ecological functions,water-level control,and water-quality purification.Three empirical analysis models—the Conditional Logit Model(CLM),Nested Logit Model(NL),and Error Component Logit Model(ECL)—were applied,with the ECL model identified as the most suitable for this study.From the physical impact assessment,we derived compensating variations to estimate the annual economic benefits of the project.The estimated annual economic value of water quality improvement due to the Anyangcheon Ecological Stream Restoration Project ranged from approximately KRW 10.54 billion to KRW 21.44 billion,while the economic value of aquatic ecosystem improvement was estimated to range from KRW 6.05 billion to KRW 12.30 billion annually.This study provides analytic framework that can inform future ecological restoration projects and sustainable water management policies.
文摘Against the backdrop of intensifying global water scarcity,reclaimed water reuse has emerged as a critical strategy for ecological replenishment of landscape water bodies.However,its potential ecological risks remain underexplored.This study aims to establish a multidimensional ecological safety evaluation framework for reclaimed water replenishment systems and propose hierarchical risk prevention strategies.By integrating ecotoxicological assays(algae growth inhibition,Daphnia behavioral anomalies,zebrafish embryo toxicity),multimedia exposure modeling,and Monte Carlo probabilistic simulations,the risk contributions and spatial heterogeneity of typical pollutants are quantitatively analyzed.Results revealed that sulfamethoxazole(RQ=2.3)and diclofenac(RQ=1.8)posed high ecological risks,with their effects nonlinearly correlated with hydraulic retention time(HRT<3 days)and nutrient loading(TN>1.2 mg/L).A three-tier risk prevention system was developed based on the“source-pathway-receptor”framework:ozone-activated carbon pretreatment achieved 85%removal efficiency for pharmaceutical contaminants,ecological floating beds enhanced nitrogen and phosphorus retention by 40%-60%,and hydraulic regulation(flow velocity>0.1 m/s)effectively suppressed pathogen proliferation.The innovation of this study lies in establishing a chemical-biological-hydrological coupled risk quantification model for reclaimed water reuse scenarios.The hierarchical prevention standards have been incorporated into local reclaimed water management regulations,providing a scientific foundation and technical paradigm for sustainable landscape water replenishment.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41461011)。
文摘The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.
基金supported by the Lebanese International University(LIU)with a funding amount of$500.
文摘Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.
基金Supported by Hunan Provincial Social Science Fund Project(21YBX021)Hunan Provincial Natural Science Foundation Project(2024JJ7234).
文摘Green development has gradually become the main theme of the current world economic development.Green transformation development and cracking the contradiction between ecology and economy need to build an effective ecological capital operation system and mechanism to support,encourage the effective operation of regional ecological capital,promote the appreciation and preservation of ecological capital,and escort the operation.This paper constructs a four-in-one regional ecological capital operation mechanism system,in which the"accumulation mechanism"is the prerequisite,the"conversion mechanism"is the key link,the"compensation mechanism"is an important supplement,and the"incentive mechanism"is the safeguard measure,which aims to ensure the smooth progress of the construction of beautiful China in the new era and realize the socialist modern power.
基金support from Guangdong Science and Technology(20230505)Guangdong Provincial Philosophy and Social Science Planning Project(GD20SQ25)Guangdong Provincial Special Fund for Science and Technology Innovation Strategy in 2024(Cultivation of College Students’Science and Technology Innovation)(pdjh2024a391)during preparation of this manuscript.
文摘This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.
基金supported by the Science Fund for the Gansu Provincial Natural Science Foundation Project(22JR5RA339).
文摘Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making.
基金Supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0102)the China Scholarship Council Program(202406190114)。
文摘Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.
基金Sponsored by the National Natural Science Foundation of China:Visual perception based natural intervention for patients in HSCT wards(52278045)Innovative Technology Project of Chinese Rehabilitation Medical Association:Research on the correlation between rehabilitation services and ecological safety in sanatoriums(KFKT-2023-20).
文摘The ecological environmental safety of health resorts can prevent premature depletion of medical natural resources and avoid being polluted.In CNKI,Wanfang Database,Google Academic,Web of Science,and Pub Med database,Chinese search terms“health resort”,“convalescence”,“ecological environment”,“ecological safety protection”,“evaluation”,as well as English search terms“health resort”,“convalescence”,“ecological environment”,“ecological safety and security”,and“estimation”were searched,and a total of 33 articles were screened.The basic information of the 33 articles was recorded,and the types of evaluation models,evaluation indicators and indicator thresholds were summarized.The future development direction was proposed,and the enlightenment to the management and protection of health resorts was summarized.
基金Under the auspices of the National Natural Science Foundation of China(No.52268008)。
文摘This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.