期刊文献+
共找到372篇文章
< 1 2 19 >
每页显示 20 50 100
A Correntropy-Based Echo State Network With Application to Time Series Prediction
1
作者 Xiufang Chen Zhenming Su +1 位作者 Long Jin Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期425-435,共11页
As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheles... As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheless,the traditional ESN and the majority of its variants are devised in the light of the second-order statistical information of data(e.g.,variance and covariance),while more information is neglected.In the context of information theoretic learning,correntropy demonstrates the capacity to grab more information from data.Therefore,under the guidelines of the maximum correntropy criterion,this paper proposes a correntropy-based echo state network(CESN)in which the first-order and higher-order information of data is captured,promoting robustness to noise.Furthermore,an incremental learning algorithm for the CESN is presented,which has the expertise to update the CESN when new data arrives,eliminating the need to retrain the network from scratch.Finally,experiments on benchmark problems and comparisons with existing works are provided to verify the effectiveness and superiority of the proposed CESN. 展开更多
关键词 Correntropy echo state network(esn) noise time series prediction
在线阅读 下载PDF
基于Echo State Neural Networks的短期交通流预测算法
2
作者 宋炯 李佑慧 +1 位作者 朱文军 赵文珅 《价值工程》 2012年第18期175-177,共3页
在城市交通环境,交通流的正确预测是比较困难,因为多个十字路口,这使得预置的交通控制模型之间的相互作用和intertwinement不能保持始终高性能在所有的交通情况。
关键词 回声状态网络(esn) 交通流量 预测
在线阅读 下载PDF
Echo State Network With Probabilistic Regularization for Time Series Prediction 被引量:2
3
作者 Xiufang Chen Mei Liu Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1743-1753,共11页
Recent decades have witnessed a trend that the echo state network(ESN)is widely utilized in field of time series prediction due to its powerful computational abilities.However,most of the existing research on ESN is c... Recent decades have witnessed a trend that the echo state network(ESN)is widely utilized in field of time series prediction due to its powerful computational abilities.However,most of the existing research on ESN is conducted under the assumption that data is free of noise or polluted by the Gaussian noise,which lacks robustness or even fails to solve real-world tasks.This work handles this issue by proposing a probabilistic regularized ESN(PRESN)with robustness guaranteed.Specifically,we design a novel objective function for minimizing both the mean and variance of modeling error,and then a scheme is derived for getting output weights of the PRESN.Furthermore,generalization performance,robustness,and unbiased estimation abilities of the PRESN are revealed by theoretical analyses.Finally,experiments on a benchmark dataset and two real-world datasets are conducted to verify the performance of the proposed PRESN.The source code is publicly available at https://github.com/LongJinlab/probabilistic-regularized-echo-state-network. 展开更多
关键词 echo state network(esn) noise probabilistic regularization ROBUSTNESS
在线阅读 下载PDF
Improvement of Shape Recognition Performance of Sendzimir Mill Control Systems Using Echo State Neural Networks 被引量:1
4
作者 Jung-hyun PARK Seong-ik HAN Jong-shik KIM 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第3期321-327,共7页
High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a s... High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a small diameter can be bent easily, strips often have complex shapes with mixed quarter and deep edge waves in the shape of plates. In order to solve this problem, fuzzy neural network controls are generally used for shape: recognition in ZRM control systems. Among various neural network types, the multi-layer perceptron (MLP) is typically used in current ZRMs. However, an MLP causes the loss of a large amount of shape recognition data. To improve the shape recognition per- formance of ZRM control systems, echo state networks (ESNs) are proposed to be used. Through simulation re- sults, it is found that shape recognition performance could be improved using the proposed ESN method. 展开更多
关键词 Sendzimir mill neural network multi-layer perceptron echo state network shape recognition
原文传递
Simplified Echo-State-Network Based Services Awareness for High-Speed Passive Optical Network 被引量:1
5
作者 Huifeng Bai Dongshan Wang Yanbin Song 《China Communications》 SCIE CSCD 2017年第6期13-21,共9页
With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by... With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by diversified-services,this paper proposes an Simplified Echo State Network(SESN) Based Services Awareness scheme in High-Speed PON(Passive Optical Network) .In this proposed scheme,the ring topology is adopted in the reservoir of SESN to reduce the complexity of original Echo State Network,and system dynamics equation is introduced to keep the accuracy of SESN.According to the network architecture of 10G-EPON,a SESN Master is running in the OLT and a number of SESN Agents work in ONUs.The SESN Master plays the main function of service-awareness from the total view of various kinds services in 10G-EPON system,by fully SESN training.Then,the reservoir information of well-trained SESN in OLT will be broadcasted to all ONUs and those SESN Agents working in ONUs are allowed to conducts independent service-awareness function.Thus,resources allocation and transport policy are both determined just only in ONUs.Simulation results show that the proposed mechanism is able to better supporting ability for multiple services. 展开更多
关键词 passive optical network servicesawareness simplified echo state network reservoir computation
在线阅读 下载PDF
Echo state network based symbol detection in chaotic baseband wireless communication
6
作者 Huiping Yin Chao Bai Haipeng Ren 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1319-1330,共12页
The Chaotic Baseband Wireless Communication System(CBWCS)is expected to eliminate the Inter-Symbol Interference(ISI)caused by multipath propagation by using the optimal decoding threshold that is the sum of the ISI ca... The Chaotic Baseband Wireless Communication System(CBWCS)is expected to eliminate the Inter-Symbol Interference(ISI)caused by multipath propagation by using the optimal decoding threshold that is the sum of the ISI caused by past decoded bits and the ISI caused by future transmitting bits.However,the current technique is only capable of removing partial effects of the ISI,because only past decoded bits are available for the suboptimal decoding threshold calculation.The unavailability of the future information needed for the optimal decoding threshold is an obstacle to further improve the Bit Error Rate(BER)performance.In contrast to the previous method using Echo State Network(ESN)to predict one future bit,the proposed method in this paper predicts the optimal decoding threshold directly using ESN.The proposed ESN-based threshold prediction method simplifies the symbol decoding operation by avoiding the iterative prediction of the output waveform points using ESN and accumulated error caused by the iterative operation.With this approach,the calculation complexity is reduced compared to the previous ESN-based approach.The proposed method achieves better BER performance compared to the previous method.The reason for this superior result is twofold.First,the proposed ESN is capable of using more future symbols information conveyed by the ESN input to obtain more accurate threshold rather than the previous method in which only one future symbol was available.Second,the proposed method here does not need to estimate the channel information using Least Squared(LS)method,which avoids the extra error caused by inaccurate channel information estimation.Simulation results and experiment based on a wireless open-access research platform under a practical wireless channel show the effectiveness and superiority of the proposed method. 展开更多
关键词 Chaotic baseband wireless communication system(CBWCS) Inter-symbol interference(ISI) echo state network(esn) Threshold prediction
在线阅读 下载PDF
Echo-state-network classification based multi-services awareness in high-speed optical passive networks
7
作者 白晖峰 Ye Quanyi 《High Technology Letters》 EI CAS 2017年第1期48-53,共6页
With the challenge of great growing of services diversity,service-oriented supporting ability is required by current high-speed passive optical network( PON). Aimed at enhancing the quality of service( Qo S) brought b... With the challenge of great growing of services diversity,service-oriented supporting ability is required by current high-speed passive optical network( PON). Aimed at enhancing the quality of service( Qo S) brought by diversified-services,this study proposes an echo state network( ESN)based multi-service awareness mechanism in 10-Gigabite ethernet passive optical network( 10GEPON). In the proposed approach,distributed architecture is adopted to realize this ESN based multi-service awareness. According to the network architecture of 10G-EPON,where a main ESN is running in OLT and a number of ESN agents works in ONUs. The main-ESN plays the main function of service-awareness from the total view of various kinds of services in 10G-EPON system,by full ESN training. Then,the reservoir information of well-trained ESN in OLT will be broadcasted to all ONUs and those ESN agents working in ONUs are allowed to conduct independent service-awareness function. Thus,resources allocation and transport policy are both determined only in ONUs. Simulation results show that the proposed mechanism is able to better support the ability of multiple services. 展开更多
关键词 10-Gigabite ethernet passive optical network (10G-EPON) multi-services aware-ness echo state network esn reservoir computation
在线阅读 下载PDF
Stock Price Forecasting: An Echo State Network Approach
8
作者 Guang Sun Jingjing Lin +6 位作者 Chen Yang Xiangyang Yin Ziyu Li Peng Guo Junqi Sun Xiaoping Fan Bin Pan 《Computer Systems Science & Engineering》 SCIE EI 2021年第3期509-520,共12页
Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro... Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro-blems.We compared our ESN with a long short-term memory(LSTM)network by forecasting the stock data of Kweichow Moutai,a leading enterprise in China’s liquor industry.By analyzing data for 120,240,and 300 days,we generated fore-cast data for the next 40,80,and 100 days,respectively,using both ESN and LSTM.In terms of accuracy,ESN had the unique advantage of capturing non-linear data.Mean absolute error(MAE)was used to present the accuracy results.The MAEs of the data forecast by ESN were 0.024,0.024,and 0.025,which were,respectively,0.065,0.007,and 0.009 less than those of LSTM.In terms of con-vergence,ESN has a reservoir state-space structure,which makes it perform faster than other models.Root-mean-square error(RMSE)was used to present the con-vergence time.In our experiment,the RMSEs of ESN were 0.22,0.27,and 0.26,which were,respectively,0.08,0.01,and 0.12 less than those of LSTM.In terms of network structure,ESN consists only of input,reservoir,and output spaces,making it a much simpler model than the others.The proposed ESN was found to be an effective model that,compared to others,converges faster,forecasts more accurately,and builds time-series analyses more easily. 展开更多
关键词 Stock data forecast echo state network deep learning
在线阅读 下载PDF
A Prediction Method Based on Improved Echo State Network for COVID-19 Nonlinear Time Series
9
作者 Banteng Liu Wei Chen +3 位作者 Yourong Chen Ping Sun Heli Jin Hao Chen 《Journal of Computer and Communications》 2020年第12期113-122,共10页
<div style="text-align:justify;"> This paper proposes a prediction method based on improved Echo State Network for COVID-19 nonlinear time series, which improves the Echo State Network from the reservo... <div style="text-align:justify;"> This paper proposes a prediction method based on improved Echo State Network for COVID-19 nonlinear time series, which improves the Echo State Network from the reservoir topology and the output weight matrix, and adopt the ABC (Artificial Bee Colony) algorithm based on crossover and crowding strategy to optimize the parameters. Finally, the proposed method is simulated and the results show that it has stronger prediction ability for COVID-19 nonlinear time series. </div> 展开更多
关键词 COVID-19 Nonlinear Time Series PREDICTION echo state network
在线阅读 下载PDF
基于分解优化并行ESN 的氢燃料电池寿命预测 被引量:2
10
作者 华志广 潘诗媛 +2 位作者 赵冬冬 李祥隆 窦满峰 《航空学报》 北大核心 2025年第2期292-306,共15页
针对质子交换膜燃料电池(PEMFC)多时间尺度老化特性导致电压预测精度较低的问题,基于集成经验模态分解(EEMD)与循环系统优化(CSBO)方法,提出了一种并行回声状态网络(PESN)结构,提升了PEMFC的寿命预测精度。采用EEMD对原始电压信号进行... 针对质子交换膜燃料电池(PEMFC)多时间尺度老化特性导致电压预测精度较低的问题,基于集成经验模态分解(EEMD)与循环系统优化(CSBO)方法,提出了一种并行回声状态网络(PESN)结构,提升了PEMFC的寿命预测精度。采用EEMD对原始电压信号进行模态分解,将不同时刻的历史数据及分解得到的不同频率信号作为ESN不同子蓄水池的并行输入,构建一种按权重分配叠加输出的并行ESN结构,利用CSBO优化并行ESN结构的相关参数,基于优化后的EPESN模型实现PEMFC未来数百小时输出电压的预测。在稳态和准动态70%的数据训练集下,EPESN比ESN的均方根误差分别降低了34.25%和47.41%。在动态1训练时长为300 h时,EPESN比ESN的均方根误差降低了15.30%。结果表明:EPESN结构能够提高PEMFC寿命的预测精度。 展开更多
关键词 质子交换膜燃料电池 寿命预测 经验模态分解 循环系统优化 回声状态网络
原文传递
基于贝叶斯优化ESN的PEMFC性能退化预测
11
作者 陈进 靳佳澍 +2 位作者 陈跃鹏 谢长君 刘柏均 《中国电机工程学报》 北大核心 2025年第16期6437-6448,I0024,共13页
质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的耐久性不足是困扰其自身大规模商业化的问题之一。该文提出一种贝叶斯优化(bayesian optimization,BO)算法优化回声状态网络(echo state network,ESN)模型进行PEMFC性... 质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的耐久性不足是困扰其自身大规模商业化的问题之一。该文提出一种贝叶斯优化(bayesian optimization,BO)算法优化回声状态网络(echo state network,ESN)模型进行PEMFC性能退化预测。通过BO获取ESN模型的最优超参数组,利用ESN模型预测PEMFC电压。此外,电压下降是PEMFC性能退化的重要表征之一,电压下降迅速的地方包含更多的性能退化特征信息,需要进行更频繁的采样;电压下降程度较小的地方包含较少的性能退化特征信息,需要进行较低频率采样。因此,该文提出一种自适应模糊规则采样(adaptive fuzzy sampling,AFS)对数据集进行采样提升PEMFC预测精度。结果表明,在静态工况中,BO-ESN的均方根误差(root mean square error,RMSE)和平均百分比误差(mean absolutepercentage error,MAPE)分别比ESN模型降低52.4%和63.6%。经AFS采样后BO-ESN模型的RMSE和MAPE分别比固定时间间隔采样降低49.8%和54.5%。在动态工况中,BO-ESN模型相比于ESN模型的RMSE和MAPE分别降低13.4%和7.96%。该方法具有较好的PEMFC性能退化预测性能。 展开更多
关键词 贝叶斯优化 回声状态网络 自适应模糊规则采样 置信区间 性能退化
原文传递
基于改进DESN的火电机组出力预测模型 被引量:1
12
作者 王翔 王辉 +1 位作者 甘玮 张依依 《计算机仿真》 2025年第4期99-105,共7页
火电机组在现代电力系统中承担着大量的调峰调频任务,通过运行参数建立出力预测模型有助于快速稳定地调整功率。提出一种改进的深度回声状态网络(Deep Echo State Networks,DESN)用于建立机组出力预测模型。该改进型具备可变的记忆能力... 火电机组在现代电力系统中承担着大量的调峰调频任务,通过运行参数建立出力预测模型有助于快速稳定地调整功率。提出一种改进的深度回声状态网络(Deep Echo State Networks,DESN)用于建立机组出力预测模型。该改进型具备可变的记忆能力以应对调整部分运行参数作用于机组出力变化存在的延时性,并根据运行参数聚类生成输入权重进一步挖掘运行参数与出力之间的映射信息。利用华北地区某火电机组不同工作状况下的两种数据集验证了模型效果。结果表明,改进得到的KM-VML-DESN相较于深度回声状态网络、多层感知机、长短期记忆网络等具备更强的预测性能。 展开更多
关键词 深度回声状态网络 循环神经网络 火电机组建模 出力预测
在线阅读 下载PDF
基于多策略鲸鱼算法的ESN参数优化模型
13
作者 郭伟 郝思琦 +1 位作者 任志忠 米娜娃尔·木提拉 《计算机工程与科学》 北大核心 2025年第11期2045-2055,共11页
针对传统回声状态网络ESN储层参数选择的随机性导致网络预测性能不佳的问题,提出了基于多策略鲸鱼优化算法MWOA的回声状态网络参数优化模型MWOA-ESN。其实质是通过MWOA算法对ESN储层关键参数进行优化。MWOA通过引入池化机制、迁移策略... 针对传统回声状态网络ESN储层参数选择的随机性导致网络预测性能不佳的问题,提出了基于多策略鲸鱼优化算法MWOA的回声状态网络参数优化模型MWOA-ESN。其实质是通过MWOA算法对ESN储层关键参数进行优化。MWOA通过引入池化机制、迁移策略和优先选择策略,有效地解决了鲸鱼优化算法存在的种群多样性低和易陷入局部最优等问题,提升了优化效率。对多个时间序列数据集和短期电力负荷数据集进行仿真实验,结果表明所提MWOA-ESN模型具有普适性,在预测精度和拟合性方面,优于已有经典模型。相比现有成果,MWOA-ESN参数优化模型是可行和有效的。 展开更多
关键词 回声状态网络 储层 多策略鲸鱼优化算法 参数优化 池化机制 搜索策略
在线阅读 下载PDF
基于ESN的多指标DHP控制策略在污水处理过程中的应用 被引量:18
14
作者 乔俊飞 薄迎春 韩广 《自动化学报》 EI CSCD 北大核心 2013年第7期1146-1151,共6页
针对污水处理过程(Wastewater treatment process,WWTP)溶解氧(Dissolved oxygen,DO)及硝态氮浓度控制问题,提出了一种多评价指标的DHP(Dual heuristic dynamic programming)控制策略.该策略能够降低评价指标的复杂性,提高评价网络的逼... 针对污水处理过程(Wastewater treatment process,WWTP)溶解氧(Dissolved oxygen,DO)及硝态氮浓度控制问题,提出了一种多评价指标的DHP(Dual heuristic dynamic programming)控制策略.该策略能够降低评价指标的复杂性,提高评价网络的逼近精度.采用回声状态网络(Echo state networks,ESNs)实现评价函数及控制策略的逼近,研究了控制器的在线学习算法.实验表明,该策略在控制性能上优于单评价指标的DHP策略及常规PID控制策略. 展开更多
关键词 自适应动态规划 多评价指标 污水处理 回声状态网络
在线阅读 下载PDF
基于ESN的航空发动机状态组合预测方法 被引量:2
15
作者 郭阳明 付琳娟 +1 位作者 冉从宝 马捷中 《航空动力学报》 EI CAS CSCD 北大核心 2013年第4期947-953,共7页
基于回声状态网络(ESN)预测模型,结合小波分析和主元分析,提出一种组合预测方法.首先对含噪非线性时间序列进行小波降噪,并重构时间序列产生训练样本,再将训练样本通过主元分析进行降维处理,降维后的时间序列数据则输入ESN模型进行预测... 基于回声状态网络(ESN)预测模型,结合小波分析和主元分析,提出一种组合预测方法.首先对含噪非线性时间序列进行小波降噪,并重构时间序列产生训练样本,再将训练样本通过主元分析进行降维处理,降维后的时间序列数据则输入ESN模型进行预测分析.对控制飞机动力输出的动压参数非线性时间序列数据进行了仿真对比实验,结果表明:组合预测方法的5步和单步预测速度累计提高了66.97%,预测的平均平方误差、标准均方根误差和归一化绝对误差也均有较大提高.该方法与传统基于ESN的预测模型相比,能有效地提高预测的效率和精度,是一种有效的非线性时间序列预测方法. 展开更多
关键词 航空发动机 状态预测 回声状态网络 小波分析 主元分析(PCA)
原文传递
基于 ESN 的污水处理多变量自适应预测控制 被引量:2
16
作者 乔俊飞 王莉莉 韩红桂 《信息与控制》 CSCD 北大核心 2014年第3期368-373,380,共7页
针对污水处理过程高度非线性、大滞后等特征,提出了一种基于回声状态网络(echo state network,ESN)模型的多变量自适应预测控制系统.首先,利用ESN建立污水处理过程的智能预测模型,该模型能够预测污水处理的输出;其次,设计污水处理过程的... 针对污水处理过程高度非线性、大滞后等特征,提出了一种基于回声状态网络(echo state network,ESN)模型的多变量自适应预测控制系统.首先,利用ESN建立污水处理过程的智能预测模型,该模型能够预测污水处理的输出;其次,设计污水处理过程的ESN辨识器,将辨识器输出与实际输出的差对主控制器进行误差补偿;最后,以仿真基准模型(BSM1)为平台,采用提出的多变量自适应控制方法对溶解氧浓度和硝态氮浓度进行控制,实验结果表明,该控制方法提高了系统的自适应性和抗干扰能力,能够对溶解氧浓度和硝态氮浓度实现快速、准确跟踪. 展开更多
关键词 污水处理过程 esn(echo state network)辨识器 esn预测模型 多变量预测控制
原文传递
复杂装备多因素耦合安全性QHS-ESN度量 被引量:2
17
作者 李超 王瑛 王强 《系统工程与电子技术》 EI CSCD 北大核心 2014年第9期1776-1781,共6页
针对装备安全事故耦合机理不明确、危险因素关联复杂的问题,提出场景分割耦合方法。将危险因素分割为危害故障、人为失误、致命环境、危险属性4个分量,从危险分量之间的非线性耦合关系拟合角度进行装备安全性度量;在此基础上,利用量子... 针对装备安全事故耦合机理不明确、危险因素关联复杂的问题,提出场景分割耦合方法。将危险因素分割为危害故障、人为失误、致命环境、危险属性4个分量,从危险分量之间的非线性耦合关系拟合角度进行装备安全性度量;在此基础上,利用量子和声算法较强的全局寻优能力,构建一种新的量子和声搜索-回声状态网络(quantum harmony search echo state network,QHS-ESN)模型及其算法。并将其应用到某型飞机低空大表速飞行安全性度量中。仿真结果表明,该模型比原有的回声状态网络模型、和声神经网络模型在低空大表速飞行场景危险分量非线性耦合关系拟合上,兼顾拟合精度和稳定性能,具有更好的装备安全性度量效果。 展开更多
关键词 事故场景 分割耦合 量子和声搜索 回声状态网络 安全性度量
在线阅读 下载PDF
基于KPCA优化ESN的网络流量预测方法 被引量:6
18
作者 田中大 李树江 +1 位作者 王艳红 高宪文 《电机与控制学报》 EI CSCD 北大核心 2015年第12期114-120,共7页
为了提高网络流量的预测精确度,提出一种核主成分分析(KPCA)优化回声状态网络(ESN)的网络流量预测方法。首先利用相空间重构对网络流量序列进行处理,提高序列的可预测性,然后对网络流量序列进行核主成分分析,提取序列中的有效信息,通过... 为了提高网络流量的预测精确度,提出一种核主成分分析(KPCA)优化回声状态网络(ESN)的网络流量预测方法。首先利用相空间重构对网络流量序列进行处理,提高序列的可预测性,然后对网络流量序列进行核主成分分析,提取序列中的有效信息,通过实验方法确定回声状态网络的储备池参数,最后利用回声状态网络对网络流量进行预测。与标准回声状态网络、差分自回归滑动平均模型(ARIMA)、以及最小二乘支持向量机(LSSVM)预测模型进行了仿真对比,结果表明提出的方法具有更高的预测精确度以及更小的预测误差,同时一定程度上减少了预测时间。 展开更多
关键词 网络流量 预测 回声状态网络 核主成分分析 相空间重构
在线阅读 下载PDF
ESN岭回归学习算法及混沌时间序列预测 被引量:47
19
作者 史志伟 韩敏 《控制与决策》 EI CSCD 北大核心 2007年第3期258-261,267,共5页
ESN(回声状态网络)是一种新型的递归神经网络,可有效处理非线性系统辨识以及混沌时间序列预测问题.针对ESN学习算法中可能存在的解的奇异问题,利用岭回归方法代替原有的线性回归算法.通过贝叶斯或Bootstrap方法确定岭回归方法中的正则... ESN(回声状态网络)是一种新型的递归神经网络,可有效处理非线性系统辨识以及混沌时间序列预测问题.针对ESN学习算法中可能存在的解的奇异问题,利用岭回归方法代替原有的线性回归算法.通过贝叶斯或Bootstrap方法确定岭回归方法中的正则项系数,从而有效地控制输出权值的幅值,改善ESN的预测性能.该方法在月太阳黑子预测问题中显示出较好的结果. 展开更多
关键词 回声状态网络 岭回归 混沌时间序列预测
在线阅读 下载PDF
基于PSO-WPESN的短期电力负荷预测方法 被引量:15
20
作者 周红标 王乐 +1 位作者 卜峰 应根旺 《电测与仪表》 北大核心 2017年第6期113-119,共7页
精确的短期电力负荷预测是电力生产优化调度和安全稳定运行的重要保证,是智能电网建设的重要一环。为提高模型的预测精度,提出了一种基于粒子群优化小波包回声状态神经网络的短期电力负荷预测方法。首先利用多分辨率小波包分解方法对负... 精确的短期电力负荷预测是电力生产优化调度和安全稳定运行的重要保证,是智能电网建设的重要一环。为提高模型的预测精度,提出了一种基于粒子群优化小波包回声状态神经网络的短期电力负荷预测方法。首先利用多分辨率小波包分解方法对负荷数据进行分解和重构,建立小波包回声状态网预测模型;然后,利用粒子群算法对预测模型储备池中的参数进行优化。实验结果表明:针对短期电力负荷动态时间序列数据,与BP、Elman、传统ESN等网络相比,PSO-WPESN网络的预测精度、稳定性和泛化能力都得到明显增强,尤其是能在一定程度上缓解由于输出矩阵过大造成ESN存在病态解的弊端。 展开更多
关键词 粒子群 小波包分解 回声状态网 电力负荷 短期预测
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部