期刊文献+
共找到369篇文章
< 1 2 19 >
每页显示 20 50 100
A Correntropy-Based Echo State Network With Application to Time Series Prediction
1
作者 Xiufang Chen Zhenming Su +1 位作者 Long Jin Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期425-435,共11页
As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheles... As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheless,the traditional ESN and the majority of its variants are devised in the light of the second-order statistical information of data(e.g.,variance and covariance),while more information is neglected.In the context of information theoretic learning,correntropy demonstrates the capacity to grab more information from data.Therefore,under the guidelines of the maximum correntropy criterion,this paper proposes a correntropy-based echo state network(CESN)in which the first-order and higher-order information of data is captured,promoting robustness to noise.Furthermore,an incremental learning algorithm for the CESN is presented,which has the expertise to update the CESN when new data arrives,eliminating the need to retrain the network from scratch.Finally,experiments on benchmark problems and comparisons with existing works are provided to verify the effectiveness and superiority of the proposed CESN. 展开更多
关键词 Correntropy echo state network(esn) noise time series prediction
在线阅读 下载PDF
基于分解优化并行ESN 的氢燃料电池寿命预测 被引量:1
2
作者 华志广 潘诗媛 +2 位作者 赵冬冬 李祥隆 窦满峰 《航空学报》 北大核心 2025年第2期292-306,共15页
针对质子交换膜燃料电池(PEMFC)多时间尺度老化特性导致电压预测精度较低的问题,基于集成经验模态分解(EEMD)与循环系统优化(CSBO)方法,提出了一种并行回声状态网络(PESN)结构,提升了PEMFC的寿命预测精度。采用EEMD对原始电压信号进行... 针对质子交换膜燃料电池(PEMFC)多时间尺度老化特性导致电压预测精度较低的问题,基于集成经验模态分解(EEMD)与循环系统优化(CSBO)方法,提出了一种并行回声状态网络(PESN)结构,提升了PEMFC的寿命预测精度。采用EEMD对原始电压信号进行模态分解,将不同时刻的历史数据及分解得到的不同频率信号作为ESN不同子蓄水池的并行输入,构建一种按权重分配叠加输出的并行ESN结构,利用CSBO优化并行ESN结构的相关参数,基于优化后的EPESN模型实现PEMFC未来数百小时输出电压的预测。在稳态和准动态70%的数据训练集下,EPESN比ESN的均方根误差分别降低了34.25%和47.41%。在动态1训练时长为300 h时,EPESN比ESN的均方根误差降低了15.30%。结果表明:EPESN结构能够提高PEMFC寿命的预测精度。 展开更多
关键词 质子交换膜燃料电池 寿命预测 经验模态分解 循环系统优化 回声状态网络
原文传递
基于贝叶斯优化ESN的PEMFC性能退化预测
3
作者 陈进 靳佳澍 +2 位作者 陈跃鹏 谢长君 刘柏均 《中国电机工程学报》 北大核心 2025年第16期6437-6448,I0024,共13页
质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的耐久性不足是困扰其自身大规模商业化的问题之一。该文提出一种贝叶斯优化(bayesian optimization,BO)算法优化回声状态网络(echo state network,ESN)模型进行PEMFC性... 质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的耐久性不足是困扰其自身大规模商业化的问题之一。该文提出一种贝叶斯优化(bayesian optimization,BO)算法优化回声状态网络(echo state network,ESN)模型进行PEMFC性能退化预测。通过BO获取ESN模型的最优超参数组,利用ESN模型预测PEMFC电压。此外,电压下降是PEMFC性能退化的重要表征之一,电压下降迅速的地方包含更多的性能退化特征信息,需要进行更频繁的采样;电压下降程度较小的地方包含较少的性能退化特征信息,需要进行较低频率采样。因此,该文提出一种自适应模糊规则采样(adaptive fuzzy sampling,AFS)对数据集进行采样提升PEMFC预测精度。结果表明,在静态工况中,BO-ESN的均方根误差(root mean square error,RMSE)和平均百分比误差(mean absolutepercentage error,MAPE)分别比ESN模型降低52.4%和63.6%。经AFS采样后BO-ESN模型的RMSE和MAPE分别比固定时间间隔采样降低49.8%和54.5%。在动态工况中,BO-ESN模型相比于ESN模型的RMSE和MAPE分别降低13.4%和7.96%。该方法具有较好的PEMFC性能退化预测性能。 展开更多
关键词 贝叶斯优化 回声状态网络 自适应模糊规则采样 置信区间 性能退化
原文传递
基于Echo State Neural Networks的短期交通流预测算法
4
作者 宋炯 李佑慧 +1 位作者 朱文军 赵文珅 《价值工程》 2012年第18期175-177,共3页
在城市交通环境,交通流的正确预测是比较困难,因为多个十字路口,这使得预置的交通控制模型之间的相互作用和intertwinement不能保持始终高性能在所有的交通情况。
关键词 回声状态网络(esn) 交通流量 预测
在线阅读 下载PDF
Echo State Network With Probabilistic Regularization for Time Series Prediction 被引量:2
5
作者 Xiufang Chen Mei Liu Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1743-1753,共11页
Recent decades have witnessed a trend that the echo state network(ESN)is widely utilized in field of time series prediction due to its powerful computational abilities.However,most of the existing research on ESN is c... Recent decades have witnessed a trend that the echo state network(ESN)is widely utilized in field of time series prediction due to its powerful computational abilities.However,most of the existing research on ESN is conducted under the assumption that data is free of noise or polluted by the Gaussian noise,which lacks robustness or even fails to solve real-world tasks.This work handles this issue by proposing a probabilistic regularized ESN(PRESN)with robustness guaranteed.Specifically,we design a novel objective function for minimizing both the mean and variance of modeling error,and then a scheme is derived for getting output weights of the PRESN.Furthermore,generalization performance,robustness,and unbiased estimation abilities of the PRESN are revealed by theoretical analyses.Finally,experiments on a benchmark dataset and two real-world datasets are conducted to verify the performance of the proposed PRESN.The source code is publicly available at https://github.com/LongJinlab/probabilistic-regularized-echo-state-network. 展开更多
关键词 echo state network(esn) noise probabilistic regularization ROBUSTNESS
在线阅读 下载PDF
Improvement of Shape Recognition Performance of Sendzimir Mill Control Systems Using Echo State Neural Networks 被引量:1
6
作者 Jung-hyun PARK Seong-ik HAN Jong-shik KIM 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第3期321-327,共7页
High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a s... High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a small diameter can be bent easily, strips often have complex shapes with mixed quarter and deep edge waves in the shape of plates. In order to solve this problem, fuzzy neural network controls are generally used for shape: recognition in ZRM control systems. Among various neural network types, the multi-layer perceptron (MLP) is typically used in current ZRMs. However, an MLP causes the loss of a large amount of shape recognition data. To improve the shape recognition per- formance of ZRM control systems, echo state networks (ESNs) are proposed to be used. Through simulation re- sults, it is found that shape recognition performance could be improved using the proposed ESN method. 展开更多
关键词 Sendzimir mill neural network multi-layer perceptron echo state network shape recognition
原文传递
Simplified Echo-State-Network Based Services Awareness for High-Speed Passive Optical Network 被引量:1
7
作者 Huifeng Bai Dongshan Wang Yanbin Song 《China Communications》 SCIE CSCD 2017年第6期13-21,共9页
With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by... With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by diversified-services,this paper proposes an Simplified Echo State Network(SESN) Based Services Awareness scheme in High-Speed PON(Passive Optical Network) .In this proposed scheme,the ring topology is adopted in the reservoir of SESN to reduce the complexity of original Echo State Network,and system dynamics equation is introduced to keep the accuracy of SESN.According to the network architecture of 10G-EPON,a SESN Master is running in the OLT and a number of SESN Agents work in ONUs.The SESN Master plays the main function of service-awareness from the total view of various kinds services in 10G-EPON system,by fully SESN training.Then,the reservoir information of well-trained SESN in OLT will be broadcasted to all ONUs and those SESN Agents working in ONUs are allowed to conducts independent service-awareness function.Thus,resources allocation and transport policy are both determined just only in ONUs.Simulation results show that the proposed mechanism is able to better supporting ability for multiple services. 展开更多
关键词 passive optical network servicesawareness simplified echo state network reservoir computation
在线阅读 下载PDF
基于多策略鲸鱼算法的ESN参数优化模型
8
作者 郭伟 郝思琦 +1 位作者 任志忠 米娜娃尔·木提拉 《计算机工程与科学》 北大核心 2025年第11期2045-2055,共11页
针对传统回声状态网络ESN储层参数选择的随机性导致网络预测性能不佳的问题,提出了基于多策略鲸鱼优化算法MWOA的回声状态网络参数优化模型MWOA-ESN。其实质是通过MWOA算法对ESN储层关键参数进行优化。MWOA通过引入池化机制、迁移策略... 针对传统回声状态网络ESN储层参数选择的随机性导致网络预测性能不佳的问题,提出了基于多策略鲸鱼优化算法MWOA的回声状态网络参数优化模型MWOA-ESN。其实质是通过MWOA算法对ESN储层关键参数进行优化。MWOA通过引入池化机制、迁移策略和优先选择策略,有效地解决了鲸鱼优化算法存在的种群多样性低和易陷入局部最优等问题,提升了优化效率。对多个时间序列数据集和短期电力负荷数据集进行仿真实验,结果表明所提MWOA-ESN模型具有普适性,在预测精度和拟合性方面,优于已有经典模型。相比现有成果,MWOA-ESN参数优化模型是可行和有效的。 展开更多
关键词 回声状态网络 储层 多策略鲸鱼优化算法 参数优化 池化机制 搜索策略
在线阅读 下载PDF
Echo state network based symbol detection in chaotic baseband wireless communication
9
作者 Huiping Yin Chao Bai Haipeng Ren 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1319-1330,共12页
The Chaotic Baseband Wireless Communication System(CBWCS)is expected to eliminate the Inter-Symbol Interference(ISI)caused by multipath propagation by using the optimal decoding threshold that is the sum of the ISI ca... The Chaotic Baseband Wireless Communication System(CBWCS)is expected to eliminate the Inter-Symbol Interference(ISI)caused by multipath propagation by using the optimal decoding threshold that is the sum of the ISI caused by past decoded bits and the ISI caused by future transmitting bits.However,the current technique is only capable of removing partial effects of the ISI,because only past decoded bits are available for the suboptimal decoding threshold calculation.The unavailability of the future information needed for the optimal decoding threshold is an obstacle to further improve the Bit Error Rate(BER)performance.In contrast to the previous method using Echo State Network(ESN)to predict one future bit,the proposed method in this paper predicts the optimal decoding threshold directly using ESN.The proposed ESN-based threshold prediction method simplifies the symbol decoding operation by avoiding the iterative prediction of the output waveform points using ESN and accumulated error caused by the iterative operation.With this approach,the calculation complexity is reduced compared to the previous ESN-based approach.The proposed method achieves better BER performance compared to the previous method.The reason for this superior result is twofold.First,the proposed ESN is capable of using more future symbols information conveyed by the ESN input to obtain more accurate threshold rather than the previous method in which only one future symbol was available.Second,the proposed method here does not need to estimate the channel information using Least Squared(LS)method,which avoids the extra error caused by inaccurate channel information estimation.Simulation results and experiment based on a wireless open-access research platform under a practical wireless channel show the effectiveness and superiority of the proposed method. 展开更多
关键词 Chaotic baseband wireless communication system(CBWCS) Inter-symbol interference(ISI) echo state network(esn) Threshold prediction
在线阅读 下载PDF
基于改进DESN的火电机组出力预测模型
10
作者 王翔 王辉 +1 位作者 甘玮 张依依 《计算机仿真》 2025年第4期99-105,共7页
火电机组在现代电力系统中承担着大量的调峰调频任务,通过运行参数建立出力预测模型有助于快速稳定地调整功率。提出一种改进的深度回声状态网络(Deep Echo State Networks,DESN)用于建立机组出力预测模型。该改进型具备可变的记忆能力... 火电机组在现代电力系统中承担着大量的调峰调频任务,通过运行参数建立出力预测模型有助于快速稳定地调整功率。提出一种改进的深度回声状态网络(Deep Echo State Networks,DESN)用于建立机组出力预测模型。该改进型具备可变的记忆能力以应对调整部分运行参数作用于机组出力变化存在的延时性,并根据运行参数聚类生成输入权重进一步挖掘运行参数与出力之间的映射信息。利用华北地区某火电机组不同工作状况下的两种数据集验证了模型效果。结果表明,改进得到的KM-VML-DESN相较于深度回声状态网络、多层感知机、长短期记忆网络等具备更强的预测性能。 展开更多
关键词 深度回声状态网络 循环神经网络 火电机组建模 出力预测
在线阅读 下载PDF
Echo-state-network classification based multi-services awareness in high-speed optical passive networks
11
作者 白晖峰 Ye Quanyi 《High Technology Letters》 EI CAS 2017年第1期48-53,共6页
With the challenge of great growing of services diversity,service-oriented supporting ability is required by current high-speed passive optical network( PON). Aimed at enhancing the quality of service( Qo S) brought b... With the challenge of great growing of services diversity,service-oriented supporting ability is required by current high-speed passive optical network( PON). Aimed at enhancing the quality of service( Qo S) brought by diversified-services,this study proposes an echo state network( ESN)based multi-service awareness mechanism in 10-Gigabite ethernet passive optical network( 10GEPON). In the proposed approach,distributed architecture is adopted to realize this ESN based multi-service awareness. According to the network architecture of 10G-EPON,where a main ESN is running in OLT and a number of ESN agents works in ONUs. The main-ESN plays the main function of service-awareness from the total view of various kinds of services in 10G-EPON system,by full ESN training. Then,the reservoir information of well-trained ESN in OLT will be broadcasted to all ONUs and those ESN agents working in ONUs are allowed to conduct independent service-awareness function. Thus,resources allocation and transport policy are both determined only in ONUs. Simulation results show that the proposed mechanism is able to better support the ability of multiple services. 展开更多
关键词 10-Gigabite ethernet passive optical network (10G-EPON) multi-services aware-ness echo state network esn reservoir computation
在线阅读 下载PDF
Stock Price Forecasting: An Echo State Network Approach
12
作者 Guang Sun Jingjing Lin +6 位作者 Chen Yang Xiangyang Yin Ziyu Li Peng Guo Junqi Sun Xiaoping Fan Bin Pan 《Computer Systems Science & Engineering》 SCIE EI 2021年第3期509-520,共12页
Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro... Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro-blems.We compared our ESN with a long short-term memory(LSTM)network by forecasting the stock data of Kweichow Moutai,a leading enterprise in China’s liquor industry.By analyzing data for 120,240,and 300 days,we generated fore-cast data for the next 40,80,and 100 days,respectively,using both ESN and LSTM.In terms of accuracy,ESN had the unique advantage of capturing non-linear data.Mean absolute error(MAE)was used to present the accuracy results.The MAEs of the data forecast by ESN were 0.024,0.024,and 0.025,which were,respectively,0.065,0.007,and 0.009 less than those of LSTM.In terms of con-vergence,ESN has a reservoir state-space structure,which makes it perform faster than other models.Root-mean-square error(RMSE)was used to present the con-vergence time.In our experiment,the RMSEs of ESN were 0.22,0.27,and 0.26,which were,respectively,0.08,0.01,and 0.12 less than those of LSTM.In terms of network structure,ESN consists only of input,reservoir,and output spaces,making it a much simpler model than the others.The proposed ESN was found to be an effective model that,compared to others,converges faster,forecasts more accurately,and builds time-series analyses more easily. 展开更多
关键词 Stock data forecast echo state network deep learning
在线阅读 下载PDF
A Prediction Method Based on Improved Echo State Network for COVID-19 Nonlinear Time Series
13
作者 Banteng Liu Wei Chen +3 位作者 Yourong Chen Ping Sun Heli Jin Hao Chen 《Journal of Computer and Communications》 2020年第12期113-122,共10页
<div style="text-align:justify;"> This paper proposes a prediction method based on improved Echo State Network for COVID-19 nonlinear time series, which improves the Echo State Network from the reservo... <div style="text-align:justify;"> This paper proposes a prediction method based on improved Echo State Network for COVID-19 nonlinear time series, which improves the Echo State Network from the reservoir topology and the output weight matrix, and adopt the ABC (Artificial Bee Colony) algorithm based on crossover and crowding strategy to optimize the parameters. Finally, the proposed method is simulated and the results show that it has stronger prediction ability for COVID-19 nonlinear time series. </div> 展开更多
关键词 COVID-19 Nonlinear Time Series PREDICTION echo state network
在线阅读 下载PDF
基于TCN-BiLSTM-Attention-ESN的光伏功率预测 被引量:9
14
作者 时培明 郭轩宇 +3 位作者 杜清灿 许学方 贺长波 李瑞雄 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期304-316,共13页
针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳... 针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳、不同波动模式的子功率序列;再将分解重构后的功率序列和其他特征序列输入到TCN-BiLSTM-Attention-ESN组合模型中,其中TCN-BiLSTM-Attention用于提取光伏序列波动特征并构建时空特征向量;最后,将所提取的时空特征向量输入ESN获得预测结果。采用新疆某光伏电站的光伏功率数据进行验证,结果表明与时下先进的预测方法相比,所提方法具有更高的预测精度,有助于提升光伏发电占比,保障电力系统平衡和运行安全。 展开更多
关键词 光伏发电功率 预测 神经网络 回声状态网络 时间卷积网络 双向长短期记忆网络
原文传递
基于知识与AW-ESN融合的烧结过程FeO含量预测 被引量:2
15
作者 方怡静 蒋朝辉 +2 位作者 黄良 桂卫华 潘冬 《自动化学报》 EI CAS CSCD 北大核心 2024年第2期282-294,共13页
氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一... 氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一种基于知识与变权重回声状态网络融合(Fusion of data-knowledge and adaptive weight echo state network, DK-AWESN)的烧结过程FeO含量预测方法.首先,针对烧结过程热状态参数缺失的问题,建立烧结料层最高温度分布模型,实现基于料层温度分布特征的FeO含量等级划分;其次,针对烧结过程参数波动频繁的问题,提出基于核函数高维映射的多尺度数据配准方法,有效抑制离群点的影响,提升建模数据的质量;最后,针对烧结过程数据驱动模型缺乏机理认知致使模型预测精度不高的问题,将过程数据中提取得到的FeO含量等级知识与AW-ESN (Adaptive weight echo state network)结合,建立DK-AWESN模型,有效提升复杂工况下FeO含量的预测精度.现场工业数据试验表明,所提方法能实时准确地预测烧结过程FeO含量,为烧结过程的智能化调控提供实时有效的FeO含量反馈信息. 展开更多
关键词 FeO含量预测 烧结过程 数据知识 变权重回声状态网络 信息融合
在线阅读 下载PDF
基于蝙蝠算法优化ESN的氯乙烯质量分数软测量模型预测
16
作者 高淑芝 李晓宇 张毅蒙 《沈阳化工大学学报》 CAS 2024年第1期83-89,共7页
为解决氯乙烯因其精馏过程具有较强的非线性,无法实现对氯乙烯质量分数实时测量的问题,提出一种基于蝙蝠算法(bat algorithm,BA)优化回声状态网络(echo state network,ESN)的软测量模型BA-ESN.首先,通过对氯乙烯精馏过程的分析,选取模... 为解决氯乙烯因其精馏过程具有较强的非线性,无法实现对氯乙烯质量分数实时测量的问题,提出一种基于蝙蝠算法(bat algorithm,BA)优化回声状态网络(echo state network,ESN)的软测量模型BA-ESN.首先,通过对氯乙烯精馏过程的分析,选取模型的辅助变量,并将归一化处理后的数据作为模型输入变量;其次,由于回声状态网络中的权值和阈值都是随机产生的,影响其泛化能力,故采用蝙蝠算法对回声状态网络的输出权值进行优化,从而提高ESN模型的收敛速度;最后,将BA-ESN模型预测氯乙烯质量分数的预测结果与ESN模型和BP模型的预测结果进行对比.仿真结果表明:BA-ESN模型的预测精度较高,泛化能力和鲁棒性都较好,能够满足氯乙烯精馏过程实时测量的要求. 展开更多
关键词 氯乙烯精馏过程 软测量 蝙蝠算法 回声状态网络
在线阅读 下载PDF
Chaotic climate system forecasting using an improved echo state network with sparse observations
17
作者 Lin DING Yulong BAI +3 位作者 Donghai ZHENG Xiaoduo PAN Manhong FAN Xin LI 《Science China Earth Sciences》 2025年第7期2346-2360,共15页
Error accumulation in long-term predictions of chaotic climate systems is caused primarily by the model's high sensitivity to initial conditions and the absence of dynamic adjustment mechanisms,leading to gradual ... Error accumulation in long-term predictions of chaotic climate systems is caused primarily by the model's high sensitivity to initial conditions and the absence of dynamic adjustment mechanisms,leading to gradual forecast divergence.This presents a critical challenge to achieving stable long-term predictions.While current data-driven approaches perform well in short-term forecasting,their accuracy deteriorates significantly over time.To overcome this limitation,we propose an autonomous echo state network with a snow ablation optimizer(AESN-SAO),which significantly improves the adaptability and robustness of data-driven methods under varying initial conditions.This approach not only eliminates the need for manual hyperparameter tuning in traditional AESNs but also effectively mitigates the common issue of initial conditions sensitivity in chaotic climate systems.Furthermore,we introduce a sparse observation insertion mechanism based on the Lyapunov time and valid prediction time(VPT),which enables AESNSAO to correct errors prior to system divergence,effectively extending the prediction horizon.Numerical experiments conducted on the Lorenz-63 and Climate Lorenz-63 systems demonstrate that integrating sparse observations with AESN-SAO approach extends the VPT to approximately 99 Lyapunov times,markedly reducing error accumulation in long-term forecasts.This study provides a reliable and efficient framework for long-term predictions in climate systems with nonlinear and chaotic dynamics,with promising applications in weather forecasting,climate modeling,and disaster risk assessment. 展开更多
关键词 Sparse observation Autonomous echo state network Snow ablation optimizer Chaotic climate system
原文传递
基于EMD-DESN的无人机集群航迹目的地预测 被引量:1
18
作者 薛锡瑞 黄树彩 +1 位作者 韦道知 吴建峰 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期290-299,共10页
无人机(unmanned aerial vehicle,UAV)集群作战样式多样、运动模式复杂,导致集群航迹目的地难以预测。为解决上述问题,本文提出了一种基于经验模态分解(empirical mode decomposition,EMD)和深度回声状态网络(deep echo state network,D... 无人机(unmanned aerial vehicle,UAV)集群作战样式多样、运动模式复杂,导致集群航迹目的地难以预测。为解决上述问题,本文提出了一种基于经验模态分解(empirical mode decomposition,EMD)和深度回声状态网络(deep echo state network,DESN)的UAV集群航迹目的地预测算法。为使集群运动模型更真实地模拟UAV集群作战过程,本文引入航向误差时变方差,改进了Olfati-Saber集群运动模型的虚拟领导项。为处理因群内的协同作用和集群航向误差导致的运动非平稳性,引入了EMD,对UAV航迹序列进行重构。考虑到获知航迹的时序性,设计了滑窗结构,采用DESN对重构航迹的不同时段进行目的地预测。仿真实验结果表明,本文提出的EMD-DESN算法较基本DESN算法能以更高的准确度预测UAV集群航迹目的地,并能更早地实现稳定的正确预测。 展开更多
关键词 无人机集群 目的地预测 深度回声状态网络 经验模态分解 改进Olfati-Saber模型
在线阅读 下载PDF
基于PLESN和LESQRN概率预测模型的短期电力负荷预测 被引量:4
19
作者 樊江川 于昊正 +2 位作者 王冬生 安佳坤 杨丽君 《燕山大学学报》 北大核心 2024年第1期54-61,共8页
针对现有电力负荷预测不能很好反映负荷数据的周期性和趋势性以及残差的波动性特征提出一种考虑周期性建模的泄露积分型回声状态网络点预测模型和泄露积分型回声状态分位数回归网络概率预测模型组合的短期电力负荷预测方法.首先为了捕... 针对现有电力负荷预测不能很好反映负荷数据的周期性和趋势性以及残差的波动性特征提出一种考虑周期性建模的泄露积分型回声状态网络点预测模型和泄露积分型回声状态分位数回归网络概率预测模型组合的短期电力负荷预测方法.首先为了捕捉负荷的多重特征定义了周期性和趋势性损失函数辅助优化点预测模型然后为克服残差的波动问题利用概率预测模型对点预测值与真实值的残差进行建模预测最后整合同时刻的点预测值与残差预测区间得到概率预测模型结果.实际算例结果表明与其他模型相比所提模型不仅有效抑制尖端振荡现象而且能够生成可靠的概率密度分布. 展开更多
关键词 短期电力负荷预测 周期性建模 泄露积分型回声状态网络 分位数回归
在线阅读 下载PDF
Short-term prediction of photovoltaic power generation based on LMD-EE-ESN with error correction 被引量:2
20
作者 YU Xiangqian LI Zheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期360-368,共9页
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog... Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction. 展开更多
关键词 photovoltaic(PV)power generation system short-term forecast local mean decomposition(LMD) energy entropy(EE) echo state network(esn)
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部