期刊文献+
共找到367篇文章
< 1 2 19 >
每页显示 20 50 100
A Correntropy-Based Echo State Network With Application to Time Series Prediction
1
作者 Xiufang Chen Zhenming Su +1 位作者 Long Jin Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期425-435,共11页
As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheles... As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheless,the traditional ESN and the majority of its variants are devised in the light of the second-order statistical information of data(e.g.,variance and covariance),while more information is neglected.In the context of information theoretic learning,correntropy demonstrates the capacity to grab more information from data.Therefore,under the guidelines of the maximum correntropy criterion,this paper proposes a correntropy-based echo state network(CESN)in which the first-order and higher-order information of data is captured,promoting robustness to noise.Furthermore,an incremental learning algorithm for the CESN is presented,which has the expertise to update the CESN when new data arrives,eliminating the need to retrain the network from scratch.Finally,experiments on benchmark problems and comparisons with existing works are provided to verify the effectiveness and superiority of the proposed CESN. 展开更多
关键词 Correntropy echo state network(ESN) noise time series prediction
在线阅读 下载PDF
Echo State Network With Probabilistic Regularization for Time Series Prediction 被引量:2
2
作者 Xiufang Chen Mei Liu Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1743-1753,共11页
Recent decades have witnessed a trend that the echo state network(ESN)is widely utilized in field of time series prediction due to its powerful computational abilities.However,most of the existing research on ESN is c... Recent decades have witnessed a trend that the echo state network(ESN)is widely utilized in field of time series prediction due to its powerful computational abilities.However,most of the existing research on ESN is conducted under the assumption that data is free of noise or polluted by the Gaussian noise,which lacks robustness or even fails to solve real-world tasks.This work handles this issue by proposing a probabilistic regularized ESN(PRESN)with robustness guaranteed.Specifically,we design a novel objective function for minimizing both the mean and variance of modeling error,and then a scheme is derived for getting output weights of the PRESN.Furthermore,generalization performance,robustness,and unbiased estimation abilities of the PRESN are revealed by theoretical analyses.Finally,experiments on a benchmark dataset and two real-world datasets are conducted to verify the performance of the proposed PRESN.The source code is publicly available at https://github.com/LongJinlab/probabilistic-regularized-echo-state-network. 展开更多
关键词 echo state network(ESN) noise probabilistic regularization ROBUSTNESS
在线阅读 下载PDF
Echo state network based symbol detection in chaotic baseband wireless communication
3
作者 Huiping Yin Chao Bai Haipeng Ren 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1319-1330,共12页
The Chaotic Baseband Wireless Communication System(CBWCS)is expected to eliminate the Inter-Symbol Interference(ISI)caused by multipath propagation by using the optimal decoding threshold that is the sum of the ISI ca... The Chaotic Baseband Wireless Communication System(CBWCS)is expected to eliminate the Inter-Symbol Interference(ISI)caused by multipath propagation by using the optimal decoding threshold that is the sum of the ISI caused by past decoded bits and the ISI caused by future transmitting bits.However,the current technique is only capable of removing partial effects of the ISI,because only past decoded bits are available for the suboptimal decoding threshold calculation.The unavailability of the future information needed for the optimal decoding threshold is an obstacle to further improve the Bit Error Rate(BER)performance.In contrast to the previous method using Echo State Network(ESN)to predict one future bit,the proposed method in this paper predicts the optimal decoding threshold directly using ESN.The proposed ESN-based threshold prediction method simplifies the symbol decoding operation by avoiding the iterative prediction of the output waveform points using ESN and accumulated error caused by the iterative operation.With this approach,the calculation complexity is reduced compared to the previous ESN-based approach.The proposed method achieves better BER performance compared to the previous method.The reason for this superior result is twofold.First,the proposed ESN is capable of using more future symbols information conveyed by the ESN input to obtain more accurate threshold rather than the previous method in which only one future symbol was available.Second,the proposed method here does not need to estimate the channel information using Least Squared(LS)method,which avoids the extra error caused by inaccurate channel information estimation.Simulation results and experiment based on a wireless open-access research platform under a practical wireless channel show the effectiveness and superiority of the proposed method. 展开更多
关键词 Chaotic baseband wireless communication system(CBWCS) Inter-symbol interference(ISI) echo state network(ESN) Threshold prediction
在线阅读 下载PDF
Stock Price Forecasting: An Echo State Network Approach
4
作者 Guang Sun Jingjing Lin +6 位作者 Chen Yang Xiangyang Yin Ziyu Li Peng Guo Junqi Sun Xiaoping Fan Bin Pan 《Computer Systems Science & Engineering》 SCIE EI 2021年第3期509-520,共12页
Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro... Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro-blems.We compared our ESN with a long short-term memory(LSTM)network by forecasting the stock data of Kweichow Moutai,a leading enterprise in China’s liquor industry.By analyzing data for 120,240,and 300 days,we generated fore-cast data for the next 40,80,and 100 days,respectively,using both ESN and LSTM.In terms of accuracy,ESN had the unique advantage of capturing non-linear data.Mean absolute error(MAE)was used to present the accuracy results.The MAEs of the data forecast by ESN were 0.024,0.024,and 0.025,which were,respectively,0.065,0.007,and 0.009 less than those of LSTM.In terms of con-vergence,ESN has a reservoir state-space structure,which makes it perform faster than other models.Root-mean-square error(RMSE)was used to present the con-vergence time.In our experiment,the RMSEs of ESN were 0.22,0.27,and 0.26,which were,respectively,0.08,0.01,and 0.12 less than those of LSTM.In terms of network structure,ESN consists only of input,reservoir,and output spaces,making it a much simpler model than the others.The proposed ESN was found to be an effective model that,compared to others,converges faster,forecasts more accurately,and builds time-series analyses more easily. 展开更多
关键词 Stock data forecast echo state network deep learning
在线阅读 下载PDF
A Prediction Method Based on Improved Echo State Network for COVID-19 Nonlinear Time Series
5
作者 Banteng Liu Wei Chen +3 位作者 Yourong Chen Ping Sun Heli Jin Hao Chen 《Journal of Computer and Communications》 2020年第12期113-122,共10页
<div style="text-align:justify;"> This paper proposes a prediction method based on improved Echo State Network for COVID-19 nonlinear time series, which improves the Echo State Network from the reservo... <div style="text-align:justify;"> This paper proposes a prediction method based on improved Echo State Network for COVID-19 nonlinear time series, which improves the Echo State Network from the reservoir topology and the output weight matrix, and adopt the ABC (Artificial Bee Colony) algorithm based on crossover and crowding strategy to optimize the parameters. Finally, the proposed method is simulated and the results show that it has stronger prediction ability for COVID-19 nonlinear time series. </div> 展开更多
关键词 COVID-19 Nonlinear Time Series PREDICTION echo state network
在线阅读 下载PDF
Chaotic climate system forecasting using an improved echo state network with sparse observations
6
作者 Lin DING Yulong BAI +3 位作者 Donghai ZHENG Xiaoduo PAN Manhong FAN Xin LI 《Science China Earth Sciences》 2025年第7期2346-2360,共15页
Error accumulation in long-term predictions of chaotic climate systems is caused primarily by the model's high sensitivity to initial conditions and the absence of dynamic adjustment mechanisms,leading to gradual ... Error accumulation in long-term predictions of chaotic climate systems is caused primarily by the model's high sensitivity to initial conditions and the absence of dynamic adjustment mechanisms,leading to gradual forecast divergence.This presents a critical challenge to achieving stable long-term predictions.While current data-driven approaches perform well in short-term forecasting,their accuracy deteriorates significantly over time.To overcome this limitation,we propose an autonomous echo state network with a snow ablation optimizer(AESN-SAO),which significantly improves the adaptability and robustness of data-driven methods under varying initial conditions.This approach not only eliminates the need for manual hyperparameter tuning in traditional AESNs but also effectively mitigates the common issue of initial conditions sensitivity in chaotic climate systems.Furthermore,we introduce a sparse observation insertion mechanism based on the Lyapunov time and valid prediction time(VPT),which enables AESNSAO to correct errors prior to system divergence,effectively extending the prediction horizon.Numerical experiments conducted on the Lorenz-63 and Climate Lorenz-63 systems demonstrate that integrating sparse observations with AESN-SAO approach extends the VPT to approximately 99 Lyapunov times,markedly reducing error accumulation in long-term forecasts.This study provides a reliable and efficient framework for long-term predictions in climate systems with nonlinear and chaotic dynamics,with promising applications in weather forecasting,climate modeling,and disaster risk assessment. 展开更多
关键词 Sparse observation Autonomous echo state network Snow ablation optimizer Chaotic climate system
原文传递
Prediction for nonlinear time series by improved deep echo state network based on reservoir states reconstruction
7
作者 Qiufeng Yu Hui Zhao +3 位作者 Li Teng Li Li Ansar Yasar Stephane Galland 《Autonomous Intelligent Systems》 2024年第1期368-378,共11页
With the aim to enhance prediction accuracy for nonlinear time series,this paper put forward an improved deep Echo State Network based on reservoir states reconstruction driven by a Self-Normalizing Activation(SNA)fun... With the aim to enhance prediction accuracy for nonlinear time series,this paper put forward an improved deep Echo State Network based on reservoir states reconstruction driven by a Self-Normalizing Activation(SNA)function as the replacement for the traditional Hyperbolic tangent activation function to reduce the model’s sensitivity to hyper-parameters.The Strategy was implemented in a two-state reconstruction process byfirst inputting the time series data to the model separately.Once,the time data passes through the reservoirs and is activated by the SNA activation function,the new state for the reservoirs is created.The state is input to the next layer,and the concatenate states module saves.Pairs of states are selected from the activated multi-layer reservoirs and input into the state reconstruction module.Multiple input states are transformed through the state reconstruction module andfinally saved to the concatenate state module.Two evaluation metrics were used to benchmark against three other ESNs with SNA activation functions to achieve better prediction accuracy. 展开更多
关键词 echo state networks Time series prediction Reconstruction model Self-normalizing activation function Reservoir computing
原文传递
Analysis of prediction performance in wavelet minimum complexity echo state network 被引量:1
8
作者 CUI Hong-yan FENG Chen LIU Yun-jie 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2013年第4期59-66,共8页
Echo state network (ESN) has become one of the most popular recurrent neural networks (RNN) for its good prediction performance of non-linear time series and simple training process. But several problems still pre... Echo state network (ESN) has become one of the most popular recurrent neural networks (RNN) for its good prediction performance of non-linear time series and simple training process. But several problems still prevent ESN from becoming a widely used tool. The most prominent problem is its high complexity with lots of random parameters. Aiming at this problem, a minimum complexity ESN model (MCESN) was proposed. In this paper, we proposed a new wavelet minimum complexity ESN model (WMCESN) to improve the prediction accuracy and increase the practical applicability. Our new model inherits the characters of minimum complexity ESN model using the fixed parameters and simple circle topology. We injected wavelet neurons to replace the original neurons in internal reservoir and designed a wavelet parameter matrix to reduce the computing time. By using different datasets, our new model performed better than the minimum complexity ESN model with normal neurons, but only utilized tiny time cost. We also used our own packets of transmission control protocol (TCP) and user datagram protocol (UDP) dataset to prove that our model can deal with the data packet bit prediction problem well. 展开更多
关键词 wavelet minimum complexity echo state network echo state network wavelet parameter matrix practical applicability
原文传递
Improvement of Shape Recognition Performance of Sendzimir Mill Control Systems Using Echo State Neural Networks 被引量:1
9
作者 Jung-hyun PARK Seong-ik HAN Jong-shik KIM 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第3期321-327,共7页
High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a s... High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a small diameter can be bent easily, strips often have complex shapes with mixed quarter and deep edge waves in the shape of plates. In order to solve this problem, fuzzy neural network controls are generally used for shape: recognition in ZRM control systems. Among various neural network types, the multi-layer perceptron (MLP) is typically used in current ZRMs. However, an MLP causes the loss of a large amount of shape recognition data. To improve the shape recognition per- formance of ZRM control systems, echo state networks (ESNs) are proposed to be used. Through simulation re- sults, it is found that shape recognition performance could be improved using the proposed ESN method. 展开更多
关键词 Sendzimir mill neural network multi-layer perceptron echo state network shape recognition
原文传递
Simplified Echo-State-Network Based Services Awareness for High-Speed Passive Optical Network 被引量:1
10
作者 Huifeng Bai Dongshan Wang Yanbin Song 《China Communications》 SCIE CSCD 2017年第6期13-21,共9页
With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by... With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by diversified-services,this paper proposes an Simplified Echo State Network(SESN) Based Services Awareness scheme in High-Speed PON(Passive Optical Network) .In this proposed scheme,the ring topology is adopted in the reservoir of SESN to reduce the complexity of original Echo State Network,and system dynamics equation is introduced to keep the accuracy of SESN.According to the network architecture of 10G-EPON,a SESN Master is running in the OLT and a number of SESN Agents work in ONUs.The SESN Master plays the main function of service-awareness from the total view of various kinds services in 10G-EPON system,by fully SESN training.Then,the reservoir information of well-trained SESN in OLT will be broadcasted to all ONUs and those SESN Agents working in ONUs are allowed to conducts independent service-awareness function.Thus,resources allocation and transport policy are both determined just only in ONUs.Simulation results show that the proposed mechanism is able to better supporting ability for multiple services. 展开更多
关键词 passive optical network servicesawareness simplified echo state network reservoir computation
在线阅读 下载PDF
Modeling deterministic echo state network with loop reservoir 被引量:1
11
作者 Xiao-chuan SUN Hong-yan CUI +2 位作者 Ren-ping LIU Jian-ya CHEN Yun-jie LIU 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第9期689-701,共13页
Echo state network (ESN), which efficiently models nonlinear dynamic systems, has been proposed as a special form of recurrent neural network. However, most of the proposed ESNs consist of complex reservoir structures... Echo state network (ESN), which efficiently models nonlinear dynamic systems, has been proposed as a special form of recurrent neural network. However, most of the proposed ESNs consist of complex reservoir structures, leading to excessive computational cost. Recently, minimum complexity ESNs were proposed and proved to exhibit high performance and low computational cost. In this paper, we propose a simple deterministic ESN with a loop reservoir, i.e., an ESN with an adjacent-feedback loop reservoir. The novel reservoir is constructed by introducing regular adjacent feedback based on the simplest loop reservoir. Only a single free parameter is tuned, which considerably simplifies the ESN construction. The combination of a simplified reservoir and fewer free parameters provides superior prediction performance. In the benchmark datasets and real-world tasks, our scheme obtains higher prediction accuracy with relatively low complexity, compared to the classic ESN and the minimum complexity ESN. Furthermore, we prove that all the linear ESNs with the simplest loop reservoir possess the same memory capacity, arbitrarily converging to the optimal value. 展开更多
关键词 echo state networks Loop reservoir structure Memory capacity
原文传递
Echo-state-network classification based multi-services awareness in high-speed optical passive networks
12
作者 白晖峰 Ye Quanyi 《High Technology Letters》 EI CAS 2017年第1期48-53,共6页
With the challenge of great growing of services diversity,service-oriented supporting ability is required by current high-speed passive optical network( PON). Aimed at enhancing the quality of service( Qo S) brought b... With the challenge of great growing of services diversity,service-oriented supporting ability is required by current high-speed passive optical network( PON). Aimed at enhancing the quality of service( Qo S) brought by diversified-services,this study proposes an echo state network( ESN)based multi-service awareness mechanism in 10-Gigabite ethernet passive optical network( 10GEPON). In the proposed approach,distributed architecture is adopted to realize this ESN based multi-service awareness. According to the network architecture of 10G-EPON,where a main ESN is running in OLT and a number of ESN agents works in ONUs. The main-ESN plays the main function of service-awareness from the total view of various kinds of services in 10G-EPON system,by full ESN training. Then,the reservoir information of well-trained ESN in OLT will be broadcasted to all ONUs and those ESN agents working in ONUs are allowed to conduct independent service-awareness function. Thus,resources allocation and transport policy are both determined only in ONUs. Simulation results show that the proposed mechanism is able to better support the ability of multiple services. 展开更多
关键词 10-Gigabite ethernet passive optical network (10G-EPON) multi-services aware-ness echo state network (ESN) reservoir computation
在线阅读 下载PDF
Hierarchy echo state network based service-awareness in 10G-EPON
13
作者 Bai Huifeng Wang Dongshan +1 位作者 Wang Licheng Wang Xiang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第2期91-96,共6页
Aimed to enhance the supporting ability for diversified services, this paper proposes a hierarchy echo state network(HESE) based service-awareness(SA)(HESN-SA) mechanism in 10 Gbit/s Ethernet passive optical net... Aimed to enhance the supporting ability for diversified services, this paper proposes a hierarchy echo state network(HESE) based service-awareness(SA)(HESN-SA) mechanism in 10 Gbit/s Ethernet passive optical network(10G-EPON). In this HESN-SA, hierarchy architecture is adopted to realize echo state network(ESN) classification based SA. According to the network architecture of 10G-EPON, the parent-ESN(p-ESN) module works in the optical line terminal(OLT), while the sub-ESN(s-ESN) module is embedded in optical network units(ONUs). Thus, the p-ESN plays the main function of SA with a total view of this system, and s-ESN in each ONU conducts the SA function under the control of p-ESN. Thus, resources allocation and transport policy are both determined by the proposed mechanism through cooperation between OLT and ONUs. Simulation results show that the HESN-SA can improve the supporting ability for multiple services. 展开更多
关键词 passive optical network service-awareness hierarchy echo state network echo state network
原文传递
基于Echo State Neural Networks的短期交通流预测算法
14
作者 宋炯 李佑慧 +1 位作者 朱文军 赵文珅 《价值工程》 2012年第18期175-177,共3页
在城市交通环境,交通流的正确预测是比较困难,因为多个十字路口,这使得预置的交通控制模型之间的相互作用和intertwinement不能保持始终高性能在所有的交通情况。
关键词 回声状态网络(ESN) 交通流量 预测
在线阅读 下载PDF
Improved vocal effort modeling by exploiting echo state network and radial basis function network
15
作者 Chao Hao Dong Liang Liu Yongli 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2019年第3期98-104,共7页
The independent hypothesis between frames in vocal effect(VE) recognition makes it difficult for frame based spectral features to describe the intrinsic temporal correlation and dynamic change information in speech ph... The independent hypothesis between frames in vocal effect(VE) recognition makes it difficult for frame based spectral features to describe the intrinsic temporal correlation and dynamic change information in speech phenomena. A novel VE detection method based on echo state network(ESN) is proposed. The input sequences are mapped into a fixed-dimensionality vector in high dimensional coding space by reservoir of the ESN. Then, radial basis function(RBF) networks are employed to fit the probability density function(pdf) of each VE mode by using the vectors in the high dimensional coding space. Finally, the minimum error rate Bayesian decision is employed to judge the VE mode. The experiments which are conducted on isolated words test set achieve 79.5% average recognition accuracy, and the results show that the proposed method can overcome the defect of the independent hypothesis between frames effectively. 展开更多
关键词 VOCAL EFFORT echo state network RESERVOIR RADIAL BASIS function support vector machine
原文传递
基于回声状态网络的智能合约漏洞检测方法 被引量:1
16
作者 刘春霞 徐晗颖 +2 位作者 高改梅 党伟超 李子路 《计算机应用》 北大核心 2025年第1期153-161,共9页
区块链平台上的智能合约是为链上各方提供安全可信赖服务的去中心化应用程序,而智能合约漏洞检测能确保智能合约的安全性。然而,现有的智能合约漏洞检测方法在样本数量不均衡和语义信息挖掘不全面时,会出现特征学习不足和漏洞检测准确... 区块链平台上的智能合约是为链上各方提供安全可信赖服务的去中心化应用程序,而智能合约漏洞检测能确保智能合约的安全性。然而,现有的智能合约漏洞检测方法在样本数量不均衡和语义信息挖掘不全面时,会出现特征学习不足和漏洞检测准确率低的问题,而且,这些方法无法对新的合约漏洞进行检测。针对上述问题,提出一种基于回声状态网络(ESN)的智能合约漏洞检测方法。首先,根据合约图,对不同语义、语法边进行学习,并利用Skip-Gram模型训练得到特征向量;其次,结合ESN和迁移学习,实现对新合约漏洞的迁移扩展,以提高漏洞检测率;最后,在Etherscan平台搜集的智能合约数据集上进行实验。实验结果表明,所提方法的准确率、精确率、召回率和F1分数分别达到了94.30%、97.54%、91.68%和94.52%,与双向长短时记忆(BLSTM)网络、自注意力机制的双向长短时记忆(BLSTM-ATT)相比,所提方法的准确率分别提高了5.93和11.75个百分点,漏洞检测性能更优。消融实验也进一步验证了ESN对智能合约漏洞检测的有效性。 展开更多
关键词 漏洞检测 智能合约 回声状态网络 迁移学习 区块链
在线阅读 下载PDF
基于分解优化并行ESN 的氢燃料电池寿命预测 被引量:1
17
作者 华志广 潘诗媛 +2 位作者 赵冬冬 李祥隆 窦满峰 《航空学报》 北大核心 2025年第2期292-306,共15页
针对质子交换膜燃料电池(PEMFC)多时间尺度老化特性导致电压预测精度较低的问题,基于集成经验模态分解(EEMD)与循环系统优化(CSBO)方法,提出了一种并行回声状态网络(PESN)结构,提升了PEMFC的寿命预测精度。采用EEMD对原始电压信号进行... 针对质子交换膜燃料电池(PEMFC)多时间尺度老化特性导致电压预测精度较低的问题,基于集成经验模态分解(EEMD)与循环系统优化(CSBO)方法,提出了一种并行回声状态网络(PESN)结构,提升了PEMFC的寿命预测精度。采用EEMD对原始电压信号进行模态分解,将不同时刻的历史数据及分解得到的不同频率信号作为ESN不同子蓄水池的并行输入,构建一种按权重分配叠加输出的并行ESN结构,利用CSBO优化并行ESN结构的相关参数,基于优化后的EPESN模型实现PEMFC未来数百小时输出电压的预测。在稳态和准动态70%的数据训练集下,EPESN比ESN的均方根误差分别降低了34.25%和47.41%。在动态1训练时长为300 h时,EPESN比ESN的均方根误差降低了15.30%。结果表明:EPESN结构能够提高PEMFC寿命的预测精度。 展开更多
关键词 质子交换膜燃料电池 寿命预测 经验模态分解 循环系统优化 回声状态网络
原文传递
基于贝叶斯优化ESN的PEMFC性能退化预测
18
作者 陈进 靳佳澍 +2 位作者 陈跃鹏 谢长君 刘柏均 《中国电机工程学报》 北大核心 2025年第16期6437-6448,I0024,共13页
质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的耐久性不足是困扰其自身大规模商业化的问题之一。该文提出一种贝叶斯优化(bayesian optimization,BO)算法优化回声状态网络(echo state network,ESN)模型进行PEMFC性... 质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的耐久性不足是困扰其自身大规模商业化的问题之一。该文提出一种贝叶斯优化(bayesian optimization,BO)算法优化回声状态网络(echo state network,ESN)模型进行PEMFC性能退化预测。通过BO获取ESN模型的最优超参数组,利用ESN模型预测PEMFC电压。此外,电压下降是PEMFC性能退化的重要表征之一,电压下降迅速的地方包含更多的性能退化特征信息,需要进行更频繁的采样;电压下降程度较小的地方包含较少的性能退化特征信息,需要进行较低频率采样。因此,该文提出一种自适应模糊规则采样(adaptive fuzzy sampling,AFS)对数据集进行采样提升PEMFC预测精度。结果表明,在静态工况中,BO-ESN的均方根误差(root mean square error,RMSE)和平均百分比误差(mean absolutepercentage error,MAPE)分别比ESN模型降低52.4%和63.6%。经AFS采样后BO-ESN模型的RMSE和MAPE分别比固定时间间隔采样降低49.8%和54.5%。在动态工况中,BO-ESN模型相比于ESN模型的RMSE和MAPE分别降低13.4%和7.96%。该方法具有较好的PEMFC性能退化预测性能。 展开更多
关键词 贝叶斯优化 回声状态网络 自适应模糊规则采样 置信区间 性能退化
原文传递
基于循环步长跳跃网络的时间序列预测算法
19
作者 史彦丽 刘鑫 赵金星 《计算机应用与软件》 北大核心 2025年第9期324-330,368,共8页
传统基于回声状态网络的混沌时间序列预测存在网络结构不确定、储备池内部结构冗余的问题,造成网络预测精度低。针对上述问题,提出一种改进的确定性循环跳跃网络。该文构建单向环形连接的拓扑结构,并共享连接权值,避免储备池中随机连接... 传统基于回声状态网络的混沌时间序列预测存在网络结构不确定、储备池内部结构冗余的问题,造成网络预测精度低。针对上述问题,提出一种改进的确定性循环跳跃网络。该文构建单向环形连接的拓扑结构,并共享连接权值,避免储备池中随机连接造成的网络不稳定性,从而提升预测精度;设计双向步长跳跃模式,减少网络内部连接的冗余,降低储备池的复杂度,有效地提高网络构建的速度。在混沌时间序列上短期预测的实验结果表明,所提出算法在混沌时间序列的单步预测中具有更好的性能。 展开更多
关键词 混沌时间序列 预测模型 回声状态网络 储备池 确定性循环跳跃网络
在线阅读 下载PDF
粒子群优化算法结合改进回声状态网络的PEMFC剩余使用寿命预测
20
作者 高锋阳 刘嘉 +3 位作者 杨栋 韩国鹏 齐丰旭 刘庆寅 《西北工业大学学报》 北大核心 2025年第3期478-487,共10页
为提高质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)退化预测的精度,提出一种基于粒子群(particle swarm optimization,PSO)算法优化改进回声状态网络(revised echo state network,RESN)的PEMFC电压预测方法。通过改... 为提高质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)退化预测的精度,提出一种基于粒子群(particle swarm optimization,PSO)算法优化改进回声状态网络(revised echo state network,RESN)的PEMFC电压预测方法。通过改进回声状态网络水库中各神经元连接方式,加快非线性拟合过程;利用PSO算法优化模型谱半径、泄漏率、神经元数量等,提高模型预测精度,采用SG(Savitzky-Golay)滤波算法对原始数据有效去峰去噪,再利用PSO-RESN准确预测PEMFC电压;采用不同样本数据集作为训练集和测试集,将所提模型在静态和准动态实验数据集下与扩展卡尔曼滤波、传统回声状态网络进行对比。结果表明,在训练集占比为80%时,对于静态工况FC1,相较于ESN,PSO-RESN方法的均方根误差(root mean square error,RMSE)和平均百分比误差(mean absolute percentage error,MAPE)分别降低了17.50%和25.53%;对于准动态工况FC2,相较于ESN方法,PSO-RESN方法的均方根误差和平均百分比误差分别降低了16.93%和21.28%。所提方法能够实现PEMFC更高精度退化趋势与剩余使用寿命预测。 展开更多
关键词 质子交换膜燃料电池 退化预测 回声状态网络 粒子群算法 剩余使用寿命
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部