Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in...Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.展开更多
Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection...Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection.The laser radar echo signal is vulnerable to background light and electronic thermal noise.While single-photon LiDAR can effectively reduce background light interference,electronic thermal noise remains a significant challenge,especially at long distances and in environments with a low signal-to-noise ratio(SNR).However,conventional denoising methods cannot achieve satisfactory results in this case.In this paper,a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise.The algorithm features an adaptive threshold and a continuous threshold function.The adaptive threshold is dynamically adjusted according to the wavelet decomposition level,and the continuous threshold function ensures continuity with lower constant error,thus optimizing the denoising process.Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error(RMSE)compared with other algorithms.Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5%reduction in RMSE.The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals.展开更多
This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Da...This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Dataset of the Guangdong-Hong Kong-Macao Greater Bay Area,the performance of OF-ConvGRU was evaluated against OF and ConvGRU methods.Threat Score(TS)and Bias Score(BIAS)were employed to assess extrapolation accuracy across various echo intensities(20-50 dBz)and weather phenomena.Results demonstrate that OF-ConvGRU significantly enhances prediction accuracy for moderate-intensity echoes(30-40 dBz),effectively combining OF s precise motion estimation with ConvGRU s nonlinear learning capabilities.However,challenges persist in low-intensity(20 dBz)and high-intensity(50 dBz)echo predictions.The study reveals distinct advantages of each method in specific contexts,highlighting the importance of multi-method approaches in operational nowcasting.OF-ConvGRU shows promise in balancing short-term accuracy with long-term stability,particularly for complex weather systems.展开更多
As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheles...As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheless,the traditional ESN and the majority of its variants are devised in the light of the second-order statistical information of data(e.g.,variance and covariance),while more information is neglected.In the context of information theoretic learning,correntropy demonstrates the capacity to grab more information from data.Therefore,under the guidelines of the maximum correntropy criterion,this paper proposes a correntropy-based echo state network(CESN)in which the first-order and higher-order information of data is captured,promoting robustness to noise.Furthermore,an incremental learning algorithm for the CESN is presented,which has the expertise to update the CESN when new data arrives,eliminating the need to retrain the network from scratch.Finally,experiments on benchmark problems and comparisons with existing works are provided to verify the effectiveness and superiority of the proposed CESN.展开更多
This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participa...This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participants were enrolled and underwentmagnetic resonance imaging(MRI)examinations on a 3.0T scanner.100 cases were included in the normal group(50 males and 50 females;mean age:45 years;age range:20e84 years).33 cases were included in the osteopenia group(17 males and 16 females;mean age:55 years;age range:43e83 years).39 caseswere includedintheOP group(19males and20females;meanage:58years;age range:48 e82 years).Conventional T1WI and T2WI were first obtained,followed by 3D-IDEAL-IQ-acqui-sition.Fat fraction(FF)and apparent transverse relaxation rate(R2*)resultswere automatically calculated from IDEAL-IQ-images on the console.Based on T1Wand T2W-images,300 ROIs for each participantweremanually delineated in L1-L5 vertebral bodies of five middle slices.In each age group of all normal subjects,each parameter was significantly correlated with gender.In male participants from the normal,osteopenia,and OP groups,statistical analysis revealed F values of 11319.292 and 180.130 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.906 and 0.950,0.994 and 0.997,0.865 and 0.820,respectively.For R2*,they were 0.665 and 0.616,0.563 and 0.519,0.571 and 0.368,respectively.In female participants from the normal,osteopenia,and OP-groups,statis-tical analysis revealed F values of 12461.658 and 548.274 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.985 and 0.991,0.996 and 0.996,0.581 and 0.678,respectively.For R2*,they were 0.698 and 0.730,0.603 and 0.665,0.622 and 0.525,respectively.Significant differences were indicated in the quanti-tative values among the three groups.FF value had good performance,while R2*value had poor performance indiscriminatingosteopenia andOP-groups.Overall,the IDEAL-IQ techniqueoffers specific reference indices that enable noninvasive and quantitative assessment of lumbar vertebrae bone metabolism,thereby providing diagnostic information for OP.展开更多
首次对ECHO25病毒进行分子生物学分析,阐明ECHO25(Entric Cytopathic Human Orphanviruses Type25)病毒河南分离株的分子生物学特征及其与世界其它分离株的基因关系。逆转录-聚合酶链反应(RT-PCR)扩增出VP1蛋白编码基因并进行序列测定,...首次对ECHO25病毒进行分子生物学分析,阐明ECHO25(Entric Cytopathic Human Orphanviruses Type25)病毒河南分离株的分子生物学特征及其与世界其它分离株的基因关系。逆转录-聚合酶链反应(RT-PCR)扩增出VP1蛋白编码基因并进行序列测定,将所测4株ECHO25病毒的VP1序列与GenBank上已发表的ECH-O25病毒VP1区进行同源性比较及遗传进化分析发现:河南省4株ECHO25与标准株JV-4核苷酸同源性为79.2%~80.1%,氨基酸同源性为89.0%~92.4%;河南省4株ECHO25核苷酸同源性为93.0%~99.0%,氨基酸同源性为92.4%~97.5%;HN-01分离株与HN-26分离株高度同源,其核苷酸同源性达99.0%;河南省4株ECHO25同属B1基因亚型。展开更多
基金Supported by the State Key Laboratory of Acoustics and Marine Information Chinese Academy of Sciences(SKL A202507).
文摘Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.
基金funded by the National Key R&D Program of China(Grant No.2022YFC3300705)the National Natural Science Foundation of China(Grant Nos.62203056,12202048,and 62201056).
文摘Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection.The laser radar echo signal is vulnerable to background light and electronic thermal noise.While single-photon LiDAR can effectively reduce background light interference,electronic thermal noise remains a significant challenge,especially at long distances and in environments with a low signal-to-noise ratio(SNR).However,conventional denoising methods cannot achieve satisfactory results in this case.In this paper,a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise.The algorithm features an adaptive threshold and a continuous threshold function.The adaptive threshold is dynamically adjusted according to the wavelet decomposition level,and the continuous threshold function ensures continuity with lower constant error,thus optimizing the denoising process.Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error(RMSE)compared with other algorithms.Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5%reduction in RMSE.The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals.
基金Scientific Research and Development Project of Hebei Meteorological Bureau(23ky08).
文摘This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Dataset of the Guangdong-Hong Kong-Macao Greater Bay Area,the performance of OF-ConvGRU was evaluated against OF and ConvGRU methods.Threat Score(TS)and Bias Score(BIAS)were employed to assess extrapolation accuracy across various echo intensities(20-50 dBz)and weather phenomena.Results demonstrate that OF-ConvGRU significantly enhances prediction accuracy for moderate-intensity echoes(30-40 dBz),effectively combining OF s precise motion estimation with ConvGRU s nonlinear learning capabilities.However,challenges persist in low-intensity(20 dBz)and high-intensity(50 dBz)echo predictions.The study reveals distinct advantages of each method in specific contexts,highlighting the importance of multi-method approaches in operational nowcasting.OF-ConvGRU shows promise in balancing short-term accuracy with long-term stability,particularly for complex weather systems.
基金supported in part by the National Natural Science Foundation of China(62176109,62476115)the Fundamental Research Funds for the Central Universities(lzujbky-2023-ey07,lzujbky-2023-it14)+1 种基金the Natural Science Foundation of Gansu Province(24JRRA488)the Supercomputing Center of Lanzhou University
文摘As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheless,the traditional ESN and the majority of its variants are devised in the light of the second-order statistical information of data(e.g.,variance and covariance),while more information is neglected.In the context of information theoretic learning,correntropy demonstrates the capacity to grab more information from data.Therefore,under the guidelines of the maximum correntropy criterion,this paper proposes a correntropy-based echo state network(CESN)in which the first-order and higher-order information of data is captured,promoting robustness to noise.Furthermore,an incremental learning algorithm for the CESN is presented,which has the expertise to update the CESN when new data arrives,eliminating the need to retrain the network from scratch.Finally,experiments on benchmark problems and comparisons with existing works are provided to verify the effectiveness and superiority of the proposed CESN.
基金supported by the Planned Project Grant(Grant No.3502Z20199064)from the Science and Technology Bureau of Xiamen(CN)the training project(Grant No.2020GGB067)of the youth and middle-aged talents of Fujian Provincial Health Commission(CN).
文摘This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participants were enrolled and underwentmagnetic resonance imaging(MRI)examinations on a 3.0T scanner.100 cases were included in the normal group(50 males and 50 females;mean age:45 years;age range:20e84 years).33 cases were included in the osteopenia group(17 males and 16 females;mean age:55 years;age range:43e83 years).39 caseswere includedintheOP group(19males and20females;meanage:58years;age range:48 e82 years).Conventional T1WI and T2WI were first obtained,followed by 3D-IDEAL-IQ-acqui-sition.Fat fraction(FF)and apparent transverse relaxation rate(R2*)resultswere automatically calculated from IDEAL-IQ-images on the console.Based on T1Wand T2W-images,300 ROIs for each participantweremanually delineated in L1-L5 vertebral bodies of five middle slices.In each age group of all normal subjects,each parameter was significantly correlated with gender.In male participants from the normal,osteopenia,and OP groups,statistical analysis revealed F values of 11319.292 and 180.130 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.906 and 0.950,0.994 and 0.997,0.865 and 0.820,respectively.For R2*,they were 0.665 and 0.616,0.563 and 0.519,0.571 and 0.368,respectively.In female participants from the normal,osteopenia,and OP-groups,statis-tical analysis revealed F values of 12461.658 and 548.274 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.985 and 0.991,0.996 and 0.996,0.581 and 0.678,respectively.For R2*,they were 0.698 and 0.730,0.603 and 0.665,0.622 and 0.525,respectively.Significant differences were indicated in the quanti-tative values among the three groups.FF value had good performance,while R2*value had poor performance indiscriminatingosteopenia andOP-groups.Overall,the IDEAL-IQ techniqueoffers specific reference indices that enable noninvasive and quantitative assessment of lumbar vertebrae bone metabolism,thereby providing diagnostic information for OP.
文摘首次对ECHO25病毒进行分子生物学分析,阐明ECHO25(Entric Cytopathic Human Orphanviruses Type25)病毒河南分离株的分子生物学特征及其与世界其它分离株的基因关系。逆转录-聚合酶链反应(RT-PCR)扩增出VP1蛋白编码基因并进行序列测定,将所测4株ECHO25病毒的VP1序列与GenBank上已发表的ECH-O25病毒VP1区进行同源性比较及遗传进化分析发现:河南省4株ECHO25与标准株JV-4核苷酸同源性为79.2%~80.1%,氨基酸同源性为89.0%~92.4%;河南省4株ECHO25核苷酸同源性为93.0%~99.0%,氨基酸同源性为92.4%~97.5%;HN-01分离株与HN-26分离株高度同源,其核苷酸同源性达99.0%;河南省4株ECHO25同属B1基因亚型。