期刊文献+
共找到6,109篇文章
< 1 2 250 >
每页显示 20 50 100
计算机技术在ECG波形参数测量中的应用
1
作者 陈湘强 高改丽 《中国计量》 2025年第5期117-119,125,共4页
检定心电图机的关键是检查被检心电图机能否正确采集标准器输入的ECG仿真信号,并准确无误地显示或打印出来。常规的测量方法是通过人工比对来测量波形幅度值、时间间隔、线宽等参数,操作难度大、效率低,且容易引入误差。基于此,文章介... 检定心电图机的关键是检查被检心电图机能否正确采集标准器输入的ECG仿真信号,并准确无误地显示或打印出来。常规的测量方法是通过人工比对来测量波形幅度值、时间间隔、线宽等参数,操作难度大、效率低,且容易引入误差。基于此,文章介绍了一种新的测量方法,借助扫描仪将ECG信号图扫描成数码图片,然后利用计算机软件工具对ECG信号波形进行测量,以提高测量准确度和操作效率,减小测量不确定度。 展开更多
关键词 计量学 心电图检定 ecg波形参数 ecg测量 计算机技术
原文传递
基于深度学习的ECG心律失常分类
2
作者 康宋煌 李俊哲 +2 位作者 张兆青 甘琳云 卢屹 《科学与信息化》 2025年第14期150-153,共4页
心血管疾病是全球主要的死亡原因之一。其中,心律失常是重要的心血管疾病类型之一,可能导致严重的心脏问题,甚至死亡。心电图(ECG)作为一种常用的临床检查工具,可以记录心脏的电活动。本研究使用MIT-BIH心电数据库,结合小波变换进行数... 心血管疾病是全球主要的死亡原因之一。其中,心律失常是重要的心血管疾病类型之一,可能导致严重的心脏问题,甚至死亡。心电图(ECG)作为一种常用的临床检查工具,可以记录心脏的电活动。本研究使用MIT-BIH心电数据库,结合小波变换进行数据预处理,然后设计了一个包括多个卷积层和全连接层的CNN模型,用于特征学习和心律失常分类。该模型最终取得不错的成绩,证明了其在学习和预测方面的有效性和稳健性。 展开更多
关键词 深度学习 ecg 心律失常 CNN
在线阅读 下载PDF
CardioMix:a multimodal image-based classification pipeline for enhanced ECG diagnosis
3
作者 Kira Sam Shah Nawaz Raja Vavekanand 《Medical Data Mining》 2025年第1期50-55,共6页
Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardi... Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardiogram(ECG)heartbeats,comparing traditional feature-based ML methods with innovative image-based approaches.The dataset underwent rigorous preprocessing,including down-sampling,frequency filtering,beat segmentation,and normalization.Two methodologies were explored:(1)handcrafted feature extraction,utilizing metrics like heart rate variability and RR distances with LightGBM classifiers,and(2)image transformation of ECG signals using Gramian Angular Field(GAF),Markov Transition Field(MTF),and Recurrence Plot(RP),enabling multimodal input for convolutional neural networks(CNNs).The Synthetic Minority Oversampling Technique(SMOTE)addressed data imbalance,significantly improving minority-class metrics.Results:The handcrafted feature approach achieved notable performance,with LightGBM excelling in precision and recall.Image-based classification further enhanced outcomes,with a custom Inception-based CNN,attaining an 85%F1 score and 97%accuracy using combined GAF,MTF,and RP transformations.Statistical analyses confirmed the significance of these improvements.Conclusion:This work highlights the potential of ML for cardiac irregularities detection,demonstrating that combining advanced preprocessing,feature engineering,and state-of-the-art neural networks can improve classification accuracy.These findings contribute to advancing AI-driven diagnostic tools,offering promising implications for cardiovascular healthcare. 展开更多
关键词 irregular heartbeats ecg signals MULTIMODAL image-based classifications
暂未订购
Automated ECG arrhythmia classification using hybrid CNN-SVM architectures
4
作者 Amine Ben Slama Yessine Amri +1 位作者 Ahmed Fnaiech Hanene Sahli 《Journal of Electronic Science and Technology》 2025年第3期43-55,共13页
Diagnosing cardiac diseases relies heavily on electrocardiogram(ECG)analysis,but detecting myocardial infarction-related arrhythmias remains challenging due to irregular heartbeats and signal variations.Despite advanc... Diagnosing cardiac diseases relies heavily on electrocardiogram(ECG)analysis,but detecting myocardial infarction-related arrhythmias remains challenging due to irregular heartbeats and signal variations.Despite advancements in machine learning,achieving both high accuracy and low computational cost for arrhythmia classification remains a critical issue.Computer-aided diagnosis systems can play a key role in early detection,reducing mortality rates associated with cardiac disorders.This study proposes a fully automated approach for ECG arrhythmia classification using deep learning and machine learning techniques to improve diagnostic accuracy while minimizing processing time.The methodology consists of three stages:1)preprocessing,where ECG signals undergo noise reduction and feature extraction;2)feature Identification,where deep convolutional neural network(CNN)blocks,combined with data augmentation and transfer learning,extract key parameters;3)classification,where a hybrid CNN-SVM model is employed for arrhythmia recognition.CNN-extracted features were fed into a binary support vector machine(SVM)classifier,and model performance was assessed using five-fold cross-validation.Experimental findings demonstrated that the CNN2 model achieved 85.52%accuracy,while the hybrid CNN2-SVM approach significantly improved accuracy to 97.33%,outperforming conventional methods.This model enhances classification efficiency while reducing computational complexity.The proposed approach bridges the gap between accuracy and processing speed in ECG arrhythmia classification,offering a promising solution for real-time clinical applications.Its superior performance compared to nonlinear classifiers highlights its potential for improving automated cardiac diagnosis. 展开更多
关键词 ARRHYTHMIA CLASSIFICATION Convolutional neural networks ecg signals Support vector machine
暂未订购
K-B2S+:A one-dimensional CNN model for AF detection with short single-lead ECG waves from wearable devices
5
作者 Bo Fang Zhaocheng Yu +2 位作者 Li-bo Zhang Yue Teng Junxin Chen 《Digital Communications and Networks》 2025年第3期613-621,共9页
Wearable signal analysis is an important technology for monitoring physiological signals without interfering with an individual’s daily behavior.As detecting cardiovascular diseases can dramatically reduce mortality,... Wearable signal analysis is an important technology for monitoring physiological signals without interfering with an individual’s daily behavior.As detecting cardiovascular diseases can dramatically reduce mortality,arrhythmia recognition using ECG signals has attracted much attention.In this paper,we propose a singlechannel convolutional neural network to detect Atrial Fibrillation(AF)based on ECG signals collected by wearable devices.It contains 3 primary modules.All recordings are firstly uniformly sized,normalized,and Butterworth low-pass filtered for noise removal.Then the preprocessed ECG signals are fed into convolutional layers for feature extraction.In the classification module,the preprocessed signals are fed into convolutional layers containing large kernels for feature extraction,and the fully connected layer provides probabilities.During the training process,the output of the previous pooling layer is concatenated with the vectors of the convolutional layer as a new feature map to reduce feature loss.Numerous comparison and ablation experiments are performed on the 2017 PhysioNet/CinC Challenge dataset,demonstrating the superiority of the proposed method. 展开更多
关键词 Single-lead ecg Wearable devices Feature concatenating Atrial fibrillation
在线阅读 下载PDF
Identification of Cardiac Risk Factors from ECG Signals Using Residual Neural Networks
6
作者 Divya Arivalagan Vignesh Ochathevan Rubankumar Dhanasekaran 《Congenital Heart Disease》 2025年第4期477-501,共25页
Background:The accurate identification of cardiac abnormalities is essential for proper diagnosis and effective treatment of cardiovascular diseases.Method:This work introduces an advanced methodology for detecting ca... Background:The accurate identification of cardiac abnormalities is essential for proper diagnosis and effective treatment of cardiovascular diseases.Method:This work introduces an advanced methodology for detecting cardiac abnormalities and estimating electrocardiographic age(ECG Age)using sophisticated signal processing and deep learning techniques.This study looks at six main heart conditions found in 12-lead electrocardiogram(ECG)data.It addresses important issues like class imbalances,missing lead scenarios,and model generalizations.A modified residual neural network(ResNet)architecture was developed to enhance the detection of cardiac abnormalities.Results:The proposed ResNet demonst rated superior performance when compared with two linear models and an alternative ResNet architectures,achieving an overall classification accuracy of 91.25%and an F1 score of 93.9%,surpassing baseline models.A comprehensive lead loss analysis was conducted,evaluating model performance across 4096 combinations of missing leads.The results revealed that pulse rate-based factors remained robust with up to 75%lead loss,while block-based factors experienced significant performance declines beyond the loss of four leads.Conclusion:This analysis highlighted the importance of addressing lead loss impacts to maintain a robust model.To optimize performance,targeted training approaches were developed for different conditions.Based on these insights,a grouping strategy was implemented to train specialized models for pulse rate-based and block-based conditions.This approach resulted in notable improvements,achieving an overall classification accuracy of 95.12%and an F1 score of 95.79%. 展开更多
关键词 ELECTROCARDIOGRAM 12-lead ecg cardiac abnormality detection ResNet machine learning deep learning electrocardiographic age lead loss analysis pulse rate-based factors block-based factors
在线阅读 下载PDF
Advanced ECG Signal Analysis for Cardiovascular Disease Diagnosis Using AVOA Optimized Ensembled Deep Transfer Learning Approaches
7
作者 Amrutanshu Panigrahi Abhilash Pati +5 位作者 Bibhuprasad Sahu Ashis Kumar Pati Subrata Chowdhury Khursheed Aurangzeb Nadeem Javaid Sheraz Aslam 《Computers, Materials & Continua》 2025年第7期1633-1657,共25页
The integration of IoT and Deep Learning(DL)has significantly advanced real-time health monitoring and predictive maintenance in prognostic and health management(PHM).Electrocardiograms(ECGs)are widely used for cardio... The integration of IoT and Deep Learning(DL)has significantly advanced real-time health monitoring and predictive maintenance in prognostic and health management(PHM).Electrocardiograms(ECGs)are widely used for cardiovascular disease(CVD)diagnosis,but fluctuating signal patterns make classification challenging.Computer-assisted automated diagnostic tools that enhance ECG signal categorization using sophisticated algorithms and machine learning are helping healthcare practitioners manage greater patient populations.With this motivation,the study proposes a DL framework leveraging the PTB-XL ECG dataset to improve CVD diagnosis.Deep Transfer Learning(DTL)techniques extract features,followed by feature fusion to eliminate redundancy and retain the most informative features.Utilizing the African Vulture Optimization Algorithm(AVOA)for feature selection is more effective than the standard methods,as it offers an ideal balance between exploration and exploitation that results in an optimal set of features,improving classification performance while reducing redundancy.Various machine learning classifiers,including Support Vector Machine(SVM),eXtreme Gradient Boosting(XGBoost),Adaptive Boosting(AdaBoost),and Extreme Learning Machine(ELM),are used for further classification.Additionally,an ensemble model is developed to further improve accuracy.Experimental results demonstrate that the proposed model achieves the highest accuracy of 96.31%,highlighting its effectiveness in enhancing CVD diagnosis. 展开更多
关键词 Prognostics and health management(PHM) cardiovascular disease(CVD) electrocardiograms(ecgs) deep transfer learning(DTL) African vulture optimization algorithm(AVOA)
在线阅读 下载PDF
用于ECG电极的长期稳定性评估方法:以皮革电极为例 被引量:1
8
作者 刘海龙 芶立 《材料导报》 北大核心 2025年第4期22-27,共6页
新型柔性电极采集心电(ECG)数据十分便利,但证实电极有效性时缺乏长期稳定性的评估数据,因此提出了一种多维度评价新型柔性电极长期稳定性的方法,包括外观形态、电极-皮肤接触阻抗、三种姿态下ECG采集质量三个方面;其中ECG采集质量的评... 新型柔性电极采集心电(ECG)数据十分便利,但证实电极有效性时缺乏长期稳定性的评估数据,因此提出了一种多维度评价新型柔性电极长期稳定性的方法,包括外观形态、电极-皮肤接触阻抗、三种姿态下ECG采集质量三个方面;其中ECG采集质量的评估由改进的信噪比、设计的汉明距离(HD-RPS-2D)和其他四个常用指标进行量化。通过自制的新型猪皮革电极进行验证,结果表明:在144 h的佩戴过程中,猪皮革电极外观变化小,电极-皮肤接触阻抗在20~50 Hz范围内均低于标准电极,并且在所有测试频段内整体波动小;六个指标能够衡量ECG信号质量,采集ECG的指标值在三种姿态下均与标准电极高度相近,特别是坐姿、站姿状态下长期稳定。 展开更多
关键词 柔性电极 心电电极 皮革电极 长期稳定性
暂未订购
ECG-QGAN:基于量子生成对抗网络的心电图生成式信息系统
9
作者 瞿治国 陈韦龙 +2 位作者 孙乐 刘文杰 张彦春 《计算机研究与发展》 北大核心 2025年第7期1622-1638,共17页
据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,E... 据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,ECG)临床数据.作为一门新兴学科,量子计算可通过利用量子叠加和纠缠特性,能够探索更大、更复杂的状态空间,进而有利于生成同临床数据一样的高质量和多样化的ECG数据.为此,提出了一种基于量子生成对抗网络(QGAN)的ECG生成式信息系统,简称ECG-QGAN.其中QGAN由量子双向门控循环单元(quantum bidirectional gated recurrent unit,QBiGRU)和量子卷积神经网络(quantum convolutional neural network,QCNN)组成.该系统利用量子的纠缠特性提高生成能力,以生成与现有临床数据一致的ECG数据,从而可以保留心脏病患者的心跳特征.该系统的生成器和判别器分别采用QBiGRU和QCNN,并应用了基于矩阵乘积状态(matrix product state,MPS)和树形张量网络(tree tensor network,TTN)所设计的变分量子电路(variational quantum circuit,VQC),可以使该系统在较少的量子资源下更高效地捕捉ECG数据信息,生成合格的ECG数据.此外,该系统应用了量子Dropout技术,以避免训练过程中出现过拟合问题.最后,实验结果表明,与其他生成ECG数据的模型相比,ECG-QGAN生成的ECG数据具有更高的平均分类准确率.同时它在量子位数量和电路深度方面对当前噪声较大的中尺度量子(noise intermediate scale quantum,NISQ)计算机是友好的. 展开更多
关键词 生成式信息系统 心电图 量子生成对抗网络 量子双向门控循环单元 量子卷积神经网络
在线阅读 下载PDF
面向ECG彩虹码的双输入改进VIT识别研究
10
作者 陈波 孙辉 +2 位作者 储昭碧 李育玲 魏嘉乐 《电子测量与仪器学报》 CSCD 北大核心 2024年第11期200-209,共10页
基于海量ECG数据,辅助医生进行有效数据分析与诊断,提高效率并减少医疗资源消耗,实现ECG智能识别是当前一个重要研究方向。针对ECG智能识别单一图像、单一深度学习算法性能有限性问题,提出了一种面向ECG彩虹码的双输入改进VIT识别方法... 基于海量ECG数据,辅助医生进行有效数据分析与诊断,提高效率并减少医疗资源消耗,实现ECG智能识别是当前一个重要研究方向。针对ECG智能识别单一图像、单一深度学习算法性能有限性问题,提出了一种面向ECG彩虹码的双输入改进VIT识别方法。首先,提出数学模型预测获取ECG标准周期,并以抽频方法挖掘ECG潜在特征,生成ECG彩虹码;然后,以卷积神经网络构建双输入特征提取模块,提取多种ECG图像局部特征进行融合,实现多维度ECG特征表示与融合,采用VIT编码模块对融合特征进行全局关注,实现基于多特征图像为输入的ECG识别。采用MIT-BIH数据库中的ECG进行实验,所提ECG识别方法获得99.41%的平均准确率,在现场采集的N类ECG中获得100%的准确率。实验结果表明,提出的图像变换方法能够有效可视化ECG特征,提出的识别方法能够有效实现ECG识别,与其他同类型方法相比获得了更优的性能。 展开更多
关键词 心电信号 ecg彩虹码 图像变换 双输入特征提取模块 改进VIT
原文传递
基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期
11
作者 朱炳洋 吴建锋 +2 位作者 王柯 王章权 刘半藤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2547-2555,2585,共10页
为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率... 为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率变异性(HRV)特征.为了进一步筛选与不同睡眠阶段具有强关联性的HRV特征,提出基于ReliefF算法与Gini指数的特征提取方法.在此基础上,采用INFO-ABCLogitBoost方法挖掘HRV与不同睡眠阶段之间的关联性,从而实现睡眠阶段的精细分类.在实际公开数据集上的实验结果表明,所提出的模型在睡眠分期任务中,总体精度为83.67%,准确率为82.59%,Kappa系数为77.94%,F1-Score为82.97%.相比于睡眠分期任务中的常规模型,所提方法展现出更加高效便捷的睡眠质量评估性能,有助于实现家庭或移动医疗场景下的睡眠监测. 展开更多
关键词 睡眠分析 心电图(ecg) 最大重叠离散小波变换(MODWT) 心率变异性(HRV) INFO-ABCLogitBoost
在线阅读 下载PDF
基于深度学习的ECG信号分类与诊断
12
作者 张占 何朗 +3 位作者 张金鹏 王涛 陈为满 娄文璐 《生物医学工程与临床》 CAS 2024年第3期431-437,共7页
心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及... 心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及时更新等未能解决的问题。因此,笔者首先对近10年来基于机器学习的ECG信号分类从波形形态分类、疾病诊断分类和纯粹的机器学习分类研究进行了回顾与综述,总结出了目前的研究遇到的困境,最后对未来面临的问题进行展望。深入学习模型在现实应用中仍存在一些挑战,未来的研究将进一步探索在芯片中实现机器学习模型的便携性和成本效益的硬件解决方案。此外,机器学习算法应寻求最佳的计算开销平衡,并重视在现实世界环境中的应用。在未来研究中,ECG应多进行临床试验,以评估机器学习模型在处理实际生物医学信号时的有效性和可行性,同时构造性价比高的深度学习模型,以帮助医学专家进行精确和及时的预测和诊断。 展开更多
关键词 ecg 机器学习 深度学习 心血管疾病
原文传递
ECG监护仪设计回顾与发展 被引量:2
13
作者 何伶俐 王宇峰 +1 位作者 祝元仲 何汶静 《医疗装备》 2015年第1期1-4,共4页
随着电子技术的发展,心电监护仪系统的设计、性能、尺寸、使用的便捷性等已经发生了很大的变化。本文介绍了ECG监护仪的各组成部分,即助电极、模拟前端、控制处理单元以及显示和分析方法的最新技术进展,并指出今后的发展方向。
关键词 ecg监护仪 ecg电极 模拟前端 ecg分析方法
在线阅读 下载PDF
基于图像的ECG波形检测分析系统开发技术 被引量:3
14
作者 李志强 林永武 李晓东 《电子技术与软件工程》 2020年第11期141-143,共3页
本文通过研究基于图像的ECG波形自动检测的相关技术,提出了检测分析系统的基本结构和开发方法,研究了ECG波形提取、图像标定测量的实现技术和基于改进模板的ECG波形QRS波、T波、P波等特征波形的快速定位测量方法。开发完成的系统检测结... 本文通过研究基于图像的ECG波形自动检测的相关技术,提出了检测分析系统的基本结构和开发方法,研究了ECG波形提取、图像标定测量的实现技术和基于改进模板的ECG波形QRS波、T波、P波等特征波形的快速定位测量方法。开发完成的系统检测结果与人工检测结果的对比表明,采用以上技术开发的检测系统检测的结果优于人工检测的结果。可见,本文研究相关技术和方法较好地解决了ECG波形的自动检测的问题。 展开更多
关键词 ecg图像 ecg波形提取 ecg波形检测分析系统 ecg特征波定位 图像测量
在线阅读 下载PDF
腔内ECG定位技术联合体外测量法在PICC中的应用 被引量:1
15
作者 赵连英 沈叶红 +1 位作者 周娟 王齐芳 《中外医学研究》 2024年第2期93-96,共4页
目的:探讨腔内心电图(ECG)定位技术联合体外测量法在经外周静脉穿刺的中心静脉导管(PICC)中的应用。方法:选取2021年1月—2023年1月阜宁县人民医院收治的100例行上肢PICC置管的患者作为研究对象。根据抛币法将其随机分为观察组和对照组,... 目的:探讨腔内心电图(ECG)定位技术联合体外测量法在经外周静脉穿刺的中心静脉导管(PICC)中的应用。方法:选取2021年1月—2023年1月阜宁县人民医院收治的100例行上肢PICC置管的患者作为研究对象。根据抛币法将其随机分为观察组和对照组,各50例。两组均进行PICC,对照组PICC应用体外测量法,观察组PICC应用腔内ECG定位技术联合体外测量法。比较两组一次性置管情况、导管相关并发症、置管满意度。结果:观察组置管准确率为98.00%,高于对照组的86.00%,置管过深率低于对照组,差异有统计学意义(P<0.05)。两组并发症发生率比较,差异无统计学意义(P>0.05)。观察组总满意度为100%,高于对照组的92.00%,差异有统计学意义(P<0.05)。结论:腔内ECG定位技术联合体外测量法可提高一次置管准确率,提高患者满意率。 展开更多
关键词 腔内心电图定位技术 体外测量法 经外周静脉穿刺的中心静脉导管 尖端最佳位置
暂未订购
Efficient ECG classification based on Chi-square distance for arrhythmia detection 被引量:1
16
作者 Dhiah Al-Shammary Mustafa Noaman Kadhim +2 位作者 Ahmed M.Mahdi Ayman Ibaida Khandakar Ahmedb 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期1-15,共15页
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar... This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data. 展开更多
关键词 Arrhythmia classification Chi-square distance Electrocardiogram(ecg)signal Particle swarm optimization(PSO)
在线阅读 下载PDF
以BP神经网络为工具的短时ECG信号情感分类 被引量:1
17
作者 张善斌 《福建电脑》 2024年第2期11-16,共6页
针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生... 针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生理信号,处理后利用神经网络建立模型。实验结果表明,本文方法得到的情感分类的平均识别率为89.14%,且生理信号进行特征提取和识别分类的时间总和小于0.15s,有效地降低了对生理信号种类和窗口长度的依赖。 展开更多
关键词 情感分类 BP神经网络 ecg信号 机器识别
在线阅读 下载PDF
基于双阶段特征提取网络的ECG降噪分类算法
18
作者 林楠 唐凯鹏 +1 位作者 牛勇鹏 谢李鹏 《郑州大学学报(工学版)》 CAS 北大核心 2024年第5期61-68,共8页
临床采集到的标准12导联心电图常含有噪声,影响了心电信号分类结果的准确度,为此提出了一种基于双阶段特征提取网络的心电图(ECG)降噪分类算法。首先,在空间特征提取阶段,由深度耦合软阈值化去噪方法的残差收缩网络从输入的12导联标准... 临床采集到的标准12导联心电图常含有噪声,影响了心电信号分类结果的准确度,为此提出了一种基于双阶段特征提取网络的心电图(ECG)降噪分类算法。首先,在空间特征提取阶段,由深度耦合软阈值化去噪方法的残差收缩网络从输入的12导联标准心电信号中提取空间特征;其次,在时间特征提取阶段,由长短期记忆网络与注意力机制结合继续从心电信号中提取时间特征;最后,通过全连接网络层融合提取到的空间特征与时间特征,输出9个类别的概率预测分布。在CPSC2018数据集上与其他同类型先进分类算法进行了对比实验,验证所提算法的效果,实验结果表明:提出的分类算法在对9类ECG信号进行分类时平均F1分数达到0.854,在各项指标上表现更优。此外,实验证明所提算法在含噪数据中的表现也优于其他主流网络,充分证明了所提算法对于含噪心电信号的降噪分类性能,该算法也可应用于其他类似含噪声生理信号的分析和处理。 展开更多
关键词 心电信号分类 心电信号去噪 残差收缩网络 软阈值化 注意力机制
在线阅读 下载PDF
Deep Learning-Based ECG Classification for Arterial Fibrillation Detection
19
作者 Muhammad Sohail Irshad Tehreem Masood +3 位作者 Arfan Jaffar Muhammad Rashid Sheeraz Akram Abeer Aljohani 《Computers, Materials & Continua》 SCIE EI 2024年第6期4805-4824,共20页
The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnos... The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes. 展开更多
关键词 Convolution neural network atrial fibrillation area under curve ecg false positive rate deep learning CLASSIFICATION
在线阅读 下载PDF
Emotion Detection Using ECG Signals and a Lightweight CNN Model
20
作者 Amita U.Dessai Hassanali G.Virani 《Computer Systems Science & Engineering》 2024年第5期1193-1211,共19页
Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,an... Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,and text data,do not always indicate true emotions,as users can falsify them.Among the physiological methods of emotion detection,Electrocardiogram(ECG)is a reliable and efficient way of detecting emotions.ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments.Researchers use deep machine learning techniques for emotion recognition using ECG signals,but there is a need to develop efficient models by tuning the hyperparameters.Furthermore,most researchers focus on detecting emotions in individual settings,but there is a need to extend this research to group settings aswell since most of the emotions are experienced in groups.In this study,we have developed a novel lightweight one dimensional(1D)Convolutional Neural Network(CNN)model by reducing the number of convolution,max pooling,and classification layers.This optimization has led to more efficient emotion classification using ECG.We tested the proposed model’s performance using ECG data from the AMIGOS(A Dataset for Affect,Personality and Mood Research on Individuals andGroups)dataset for both individual and group settings.The results showed that themodel achieved an accuracy of 82.21%and 85.62%for valence and arousal classification,respectively,in individual settings.In group settings,the accuracy was even higher,at 99.56%and 99.68%for valence and arousal classification,respectively.By reducing the number of layers,the lightweight CNNmodel can process data more quickly and with less complexity in the hardware,making it suitable for the implementation on the mobile phone devices to detect emotions with improved accuracy and speed. 展开更多
关键词 Emotions AMIGOS ecg LIGHTWEIGHT 1D CNN
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部