A controlled bidirectional quantum secret direct communication scheme is proposed by using a Greenberger- Horne-Zeilinger (GHZ) state. In the scheme, two users can exchange their secret messages simultaneously with ...A controlled bidirectional quantum secret direct communication scheme is proposed by using a Greenberger- Horne-Zeilinger (GHZ) state. In the scheme, two users can exchange their secret messages simultaneously with a set of devices under the control of a third party. The security of the scheme is analysed and confirmed.展开更多
The quantum secure direct communication protocol recently proposed by Cao and Song [Chin. Phys. Left. 23 (2006)290] (i.e., the C-S QSDC protocol) is revisited. A security leak is pointed out. Taking advantage of t...The quantum secure direct communication protocol recently proposed by Cao and Song [Chin. Phys. Left. 23 (2006)290] (i.e., the C-S QSDC protocol) is revisited. A security leak is pointed out. Taking advantage of this leak, an eavesdropper may adopt the intercept-measure-resend strategy to attack the quantum channel such that in the C-S QSDC protocol the secret message can be completely eavesdropped. To fix the leak, the original version of the C-S QSDC protocol is revised. As a consequence, the security is improved and assured at least in the case of an ideal quantum channel.展开更多
The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC...The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods.展开更多
Active distribution network(ADN),as a typically cyber-physical system,develops with the evolution of Internet of Things(IoTs),which makes the network vulnerable to cybersecurity threats.In this paper,the eavesdropping...Active distribution network(ADN),as a typically cyber-physical system,develops with the evolution of Internet of Things(IoTs),which makes the network vulnerable to cybersecurity threats.In this paper,the eavesdropping attacks that lead to privacy breaches are addressed for the IoT-enabled ADN.A privacy-preserving energy management system(EMS)is proposed and empowered by secure data exchange protocols based on the homomorphic cryptosystem.During the information transmission among distributed generators and load customers in the EMS,private information including power usage and electricity bidding price can be effectively protected against eavesdropping attacks.The correctness of the final solutions,e.g.,optimal market clearing price and unified power utilization ratio,can be deterministically guaranteed.The simulation results demonstrate the effectiveness and the computational efficiency of the proposed homomorphically encrypted EMS.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10534030 and 10304022.
文摘A controlled bidirectional quantum secret direct communication scheme is proposed by using a Greenberger- Horne-Zeilinger (GHZ) state. In the scheme, two users can exchange their secret messages simultaneously with a set of devices under the control of a third party. The security of the scheme is analysed and confirmed.
基金Supported by the National Natural Science Foundation of China under Grant No 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No 06042087, the General Fund of the Educational Committee of Anhui Province under Grant No 2006KJ260B, the Key Fund of the Ministry of Education of China under Grant No 206063, the Natural Science Foundation of Hubei Province under Grant No 2006ABA354, and the Foundation of the State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics of Chinese Academy of Sciences under Grant No T152615.
文摘The quantum secure direct communication protocol recently proposed by Cao and Song [Chin. Phys. Left. 23 (2006)290] (i.e., the C-S QSDC protocol) is revisited. A security leak is pointed out. Taking advantage of this leak, an eavesdropper may adopt the intercept-measure-resend strategy to attack the quantum channel such that in the C-S QSDC protocol the secret message can be completely eavesdropped. To fix the leak, the original version of the C-S QSDC protocol is revised. As a consequence, the security is improved and assured at least in the case of an ideal quantum channel.
基金supported in part by the National Natural Sci-ence Foundation of China(No.61973277)in part by the Zhejiang Provincial Natural Science Foundation of China(No.LR20F030004)in part by the Major Key Project of PCL(No.PCL2021A09).
文摘The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(No.52077188)Guangdong Science and Technology Department(No.2019A1515011226)Hong Kong Research Grant Council(No.15219619).
文摘Active distribution network(ADN),as a typically cyber-physical system,develops with the evolution of Internet of Things(IoTs),which makes the network vulnerable to cybersecurity threats.In this paper,the eavesdropping attacks that lead to privacy breaches are addressed for the IoT-enabled ADN.A privacy-preserving energy management system(EMS)is proposed and empowered by secure data exchange protocols based on the homomorphic cryptosystem.During the information transmission among distributed generators and load customers in the EMS,private information including power usage and electricity bidding price can be effectively protected against eavesdropping attacks.The correctness of the final solutions,e.g.,optimal market clearing price and unified power utilization ratio,can be deterministically guaranteed.The simulation results demonstrate the effectiveness and the computational efficiency of the proposed homomorphically encrypted EMS.