In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-gue...In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-guess potential temperature reference profile on the Madden-Julian oscillation(MJO)propagation and structure.This study diagnosed the MJO active phase composites of the MJO-filtered outgoing longwave radiation(OLR)during the December-to-February(DJF)period of 2006-2016 over the Indian Ocean(IO),Maritime Continent(MC),and western Pacific(WP).The results show that the MJO-filtered OLR intensity,propagation pattern,and MJO classification(standing,jumping,and propagating clusters)are sensitive to theα-value,but the phase speeds of propagating MJOs are not.Overall,with an increasingα-value,the simulated MJO-filtered OLR intensity increases,and the simulated propagation pattern is improved.Results also show that the intensity and propagation pattern of an eastward-propagating MJO are associated with MJO circulation structures and thermodynamic structures.Asαincreases,the front Walker cell and the low-level easterly anomaly are enhanced,which premoistens the lower troposphere and triggers more active shallow and congestus clouds.The enhanced shallow and congestus convection preconditions the lower to middle troposphere,accelerating the transition from congestus to deep convection,thereby facilitating eastward propagation of the MJO.Therefore,the simulated MJO tends to transfer from standing to eastward propagating asαincreases.In summary,increasing theα-value is a possible way to improve the simulation of the structure and propagation of the MJO.展开更多
The circulation and zonal wind anomalies in the lower troposphere over the equatorial western Pacific and their roles in the developing and decaying processes of the 1982–1983, 1986 –1987, 1991–1992 and 1997–1998 ...The circulation and zonal wind anomalies in the lower troposphere over the equatorial western Pacific and their roles in the developing and decaying processes of the 1982–1983, 1986 –1987, 1991–1992 and 1997–1998 El Ni?o events and the occurrence of La Ni?a events are analyzed by using the observed data in this paper. The results show that before the developing stage of these El Ni?o events, there were cyclonic circulation anomalies in the lower troposphere over the tropical western Pacific, and the anomalies brought the westerly anomalies over the Indonesia and the tropical western Pacific. However, when the El Ni?o events developed to their mature phase, there were anticyclonic circulation anomalies in the lower troposphere over the tropical western Pacific, and the anomalies made the easterly anomalies appear over the tropical western Pacific. A simple, dynamical model of tropical ocean is used to calculate the response of the equatorial oceanic waves to the observed anomalies of wind stress near the sea surface of the equatorial Pacific during the 1997/98 ENSO cycle, which was the strongest one in the 20th century. It is shown that the zonal wind stress anomalies have an important dynamical effect on the devel-opment and decay of this El Ni?o event and the occurrence of the following La Ni?a event.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41975090,U2242201,42075077)the Natural Science Foundation of Hunan Province,China(2022JJ20043)the Science and Technology Innovation Program of Hunan Province,China(2022RC1239)。
文摘In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-guess potential temperature reference profile on the Madden-Julian oscillation(MJO)propagation and structure.This study diagnosed the MJO active phase composites of the MJO-filtered outgoing longwave radiation(OLR)during the December-to-February(DJF)period of 2006-2016 over the Indian Ocean(IO),Maritime Continent(MC),and western Pacific(WP).The results show that the MJO-filtered OLR intensity,propagation pattern,and MJO classification(standing,jumping,and propagating clusters)are sensitive to theα-value,but the phase speeds of propagating MJOs are not.Overall,with an increasingα-value,the simulated MJO-filtered OLR intensity increases,and the simulated propagation pattern is improved.Results also show that the intensity and propagation pattern of an eastward-propagating MJO are associated with MJO circulation structures and thermodynamic structures.Asαincreases,the front Walker cell and the low-level easterly anomaly are enhanced,which premoistens the lower troposphere and triggers more active shallow and congestus clouds.The enhanced shallow and congestus convection preconditions the lower to middle troposphere,accelerating the transition from congestus to deep convection,thereby facilitating eastward propagation of the MJO.Therefore,the simulated MJO tends to transfer from standing to eastward propagating asαincreases.In summary,increasing theα-value is a possible way to improve the simulation of the structure and propagation of the MJO.
基金the National Key Program for Developing Basic Research (Grant No. 1998040900).
文摘The circulation and zonal wind anomalies in the lower troposphere over the equatorial western Pacific and their roles in the developing and decaying processes of the 1982–1983, 1986 –1987, 1991–1992 and 1997–1998 El Ni?o events and the occurrence of La Ni?a events are analyzed by using the observed data in this paper. The results show that before the developing stage of these El Ni?o events, there were cyclonic circulation anomalies in the lower troposphere over the tropical western Pacific, and the anomalies brought the westerly anomalies over the Indonesia and the tropical western Pacific. However, when the El Ni?o events developed to their mature phase, there were anticyclonic circulation anomalies in the lower troposphere over the tropical western Pacific, and the anomalies made the easterly anomalies appear over the tropical western Pacific. A simple, dynamical model of tropical ocean is used to calculate the response of the equatorial oceanic waves to the observed anomalies of wind stress near the sea surface of the equatorial Pacific during the 1997/98 ENSO cycle, which was the strongest one in the 20th century. It is shown that the zonal wind stress anomalies have an important dynamical effect on the devel-opment and decay of this El Ni?o event and the occurrence of the following La Ni?a event.