Huge numbers of induced unpropped(IU)fractures are generated near propped fractures during hydraulic fracturing in shale gas reservoirs.But it is still unclear how their fracture space and conductivity evolve under in...Huge numbers of induced unpropped(IU)fractures are generated near propped fractures during hydraulic fracturing in shale gas reservoirs.But it is still unclear how their fracture space and conductivity evolve under in-situ conditions.This paper prepares three types of samples,namely,manually split vertical/parallel to beddings(MSV,MSP)and parallel natural fractures(NFP),to represent the varied IU fractures as well as their surface morphology.Laser scan and reconstruction demonstrate that the initial fracture spaces of MSVs and MSPs are limited as the asperities of newly created surfaces are wellmatched,and the NFPs have bigger space due to inhomogeneous geological corrosion.Surface slippage and consequent asperity mismatch increase the fracture width by several times,and the increase is proportional to surface roughness.Under stressful conditions,the slipped MSVs retain the smallest residual space and conductivity due to the newly sharp asperities.Controlled by the bedding structures and clay mineral hydrations,the conductivity of MSPs decreases most after treated with a fracturing fluid.The NFPs remain the highest conductivity,benefitting from their dispersive,gentle,and strong asperities.The results reveal the diverse evolution trends of IU fractures and can provide reliable parameters for fracturing design,post-fracturing evaluation,and productivity forecasting.展开更多
基金supported by the National Natural Science Youth Foundation of China(No.52104003)the Open Fund of Engineering Research Center of Development and Management for Low to Ultra-Low Permeability Oil&Gas Reservoirs in West China,Ministry of Education(No.KFJJ-XB-2020-5)+2 种基金the Science and Technology Planning Project of Sichuan Province(No.22NSFSC4005)the National Natural Science Foundation of China(No.52274031 and No.52374005)the Natural Science Youth Foundation of Sichuan Province(No.2023NSFSC0930)。
文摘Huge numbers of induced unpropped(IU)fractures are generated near propped fractures during hydraulic fracturing in shale gas reservoirs.But it is still unclear how their fracture space and conductivity evolve under in-situ conditions.This paper prepares three types of samples,namely,manually split vertical/parallel to beddings(MSV,MSP)and parallel natural fractures(NFP),to represent the varied IU fractures as well as their surface morphology.Laser scan and reconstruction demonstrate that the initial fracture spaces of MSVs and MSPs are limited as the asperities of newly created surfaces are wellmatched,and the NFPs have bigger space due to inhomogeneous geological corrosion.Surface slippage and consequent asperity mismatch increase the fracture width by several times,and the increase is proportional to surface roughness.Under stressful conditions,the slipped MSVs retain the smallest residual space and conductivity due to the newly sharp asperities.Controlled by the bedding structures and clay mineral hydrations,the conductivity of MSPs decreases most after treated with a fracturing fluid.The NFPs remain the highest conductivity,benefitting from their dispersive,gentle,and strong asperities.The results reveal the diverse evolution trends of IU fractures and can provide reliable parameters for fracturing design,post-fracturing evaluation,and productivity forecasting.