The setting values of thresholds for fault feature parameters are critical in all kinds of protection schemes.When the detected feature parameter value exceeds the setting value,the protection will trip.However,the se...The setting values of thresholds for fault feature parameters are critical in all kinds of protection schemes.When the detected feature parameter value exceeds the setting value,the protection will trip.However,the setting value based conventional protection schemes sometimes cannot satisfy the protection requirements of neutral ineffectively earthed power systems(NIEPS)due to wide variations in operating conditions and the complexities of fault cases.In this paper,a novel single phase grounding fault protection scheme without threshold setting is proposed.The fault detection is achieved based on operating states rather than setting values.A fuzzy c-means algorithm is used to divide the operating state of the protected feeder into non-fault states and fault states.The cluster center of each state is then obtained by classifying the historical feature samples of the protected feeder extracted under various operating conditions into their corresponding states in a constructed multi-dimensional fault feature space.The distances between the detected feature samples and the cluster centers of the non-fault and the fault states are calculated.If the distance to the fault state is shorter than that to the non-fault state,a fault is detected.Otherwise,the feeder is considered normal.A PSCAD/EMTDC simulator is used to simulate a 35 kV NIEPS under various operating conditions,non-linear loads,and complex fault cases.Results show that the proposed single phase grounding fault protection scheme without threshold setting can protect the system correctly under all kinds of faults.展开更多
This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductiv...This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductivity.Particular emphasis is placed on the role of microalloying elements—particularly Sc and Zr-in promoting the formation of coherent nanoscale precipitates such as Al_(3)Zr,Al_(3)Sc,and core-shell Al_(3)(Sc,Zr)with metastable L1_(2)crystal structures.These precipitates contribute significantly to high-temperature performance by enabling precipitation strengthening and stabilizing grain boundaries.The review also explores the emerging role of other rare earth elements(REEs),such as erbium(Er),in accelerating precipitation kinetics and improving thermal stability by retarding coarsening.Additionally,recent advancements in thermomechanical processing strategies are examined,with a focus on scalable approaches to optimize the strength-conductivity balance.These approaches involve multi-step heat treatments and carefully controlled manufacturing sequences,particularly the combination of cold drawing and aging treatment to promote uniform and effective precipitation.This review offers valuable insights to guide the development of cost-effective,high-strength,heat-resistant aluminum alloys beyond conductor applications,particularly those strengthened through microalloying with Sc and Zr.展开更多
The effect of plasma and charged particle interaction with spacecraft in a low Earth orbit(LEO)environment leads to ion focusing and the formation of an ion void in the downstream region as a result of charging.Simula...The effect of plasma and charged particle interaction with spacecraft in a low Earth orbit(LEO)environment leads to ion focusing and the formation of an ion void in the downstream region as a result of charging.Simulations and investigations using a fixed potential imposed on the spacecraft showed the nonsignificance of geophysical parameter changes to ion focusing.Variation of the temperature ratio(T_(r))contributed only to local ion focusing and manifested as two-ion streamers dispersed at the upper and lower edges of the spacecraft-the outermost layers of the satellite structure at the top and bottom,respectively.A simulation involving changing the ambient plasma density(N_(p))also showed the formation of local ion focusing,in which ions were more concentrated as the density increased.Furthermore,auroral electron density(N_(ae))variation had no clear impact on ion focusing,as indicated by static two-ion structures in the wake field.However,variation of the object potential(ϕ)strongly affected ion focusing formation,leading to distortion of the initial ion void region behind the spacecraft.The formation of ion focusing in this study was subject to the electric field produced by the object potential and the ambipolar electric field resulting from plasma expansion in the downstream region.展开更多
We report a theoretical investigation into superconductivity within the MAXH_(6) quaternary hydride system using first-principles calculations,where M and A denote alkali and alkaline earth elements,respectively,and X...We report a theoretical investigation into superconductivity within the MAXH_(6) quaternary hydride system using first-principles calculations,where M and A denote alkali and alkaline earth elements,respectively,and X represents transition metal elements.Systematic analysis of electronic band structures,phonon dispersions,and electron-phonon coupling reveals that substitution of MA binary metal combinations and X metal atoms can create favorable conditions for superconductivity.Mapping of superconducting critical temperatures,combined with dynamical stability analysis through phonon calculations,identifies ten superconducting candidates at ambient pressure.Among these,LiNaAgH_(6) exhibits nearly-free-electron behavior reminiscent of monovalent electron superconductors.It demonstrates exceptional superconducting properties with electron–phonon coupling λ=2.707,which yields a superconducting transition temperature T_(c) of 206.4 K using the Allen–Dynes formula.Its structural analogs MgNaPdH_(6),LiMgPdH_(6),LiMgAgH_(6),LiMgAuH_(6) all exhibit superconducting transition temperatures above 110 K.These findings advance our fundamental understanding of superconductivity in quaternary hydrides and provide guidance for rational design of new high-temperature superconducting materials.展开更多
基金supported in part by National Natural Science Foundation of China under Grant 61233008 and Grant 51277014.
文摘The setting values of thresholds for fault feature parameters are critical in all kinds of protection schemes.When the detected feature parameter value exceeds the setting value,the protection will trip.However,the setting value based conventional protection schemes sometimes cannot satisfy the protection requirements of neutral ineffectively earthed power systems(NIEPS)due to wide variations in operating conditions and the complexities of fault cases.In this paper,a novel single phase grounding fault protection scheme without threshold setting is proposed.The fault detection is achieved based on operating states rather than setting values.A fuzzy c-means algorithm is used to divide the operating state of the protected feeder into non-fault states and fault states.The cluster center of each state is then obtained by classifying the historical feature samples of the protected feeder extracted under various operating conditions into their corresponding states in a constructed multi-dimensional fault feature space.The distances between the detected feature samples and the cluster centers of the non-fault and the fault states are calculated.If the distance to the fault state is shorter than that to the non-fault state,a fault is detected.Otherwise,the feeder is considered normal.A PSCAD/EMTDC simulator is used to simulate a 35 kV NIEPS under various operating conditions,non-linear loads,and complex fault cases.Results show that the proposed single phase grounding fault protection scheme without threshold setting can protect the system correctly under all kinds of faults.
文摘This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductivity.Particular emphasis is placed on the role of microalloying elements—particularly Sc and Zr-in promoting the formation of coherent nanoscale precipitates such as Al_(3)Zr,Al_(3)Sc,and core-shell Al_(3)(Sc,Zr)with metastable L1_(2)crystal structures.These precipitates contribute significantly to high-temperature performance by enabling precipitation strengthening and stabilizing grain boundaries.The review also explores the emerging role of other rare earth elements(REEs),such as erbium(Er),in accelerating precipitation kinetics and improving thermal stability by retarding coarsening.Additionally,recent advancements in thermomechanical processing strategies are examined,with a focus on scalable approaches to optimize the strength-conductivity balance.These approaches involve multi-step heat treatments and carefully controlled manufacturing sequences,particularly the combination of cold drawing and aging treatment to promote uniform and effective precipitation.This review offers valuable insights to guide the development of cost-effective,high-strength,heat-resistant aluminum alloys beyond conductor applications,particularly those strengthened through microalloying with Sc and Zr.
文摘The effect of plasma and charged particle interaction with spacecraft in a low Earth orbit(LEO)environment leads to ion focusing and the formation of an ion void in the downstream region as a result of charging.Simulations and investigations using a fixed potential imposed on the spacecraft showed the nonsignificance of geophysical parameter changes to ion focusing.Variation of the temperature ratio(T_(r))contributed only to local ion focusing and manifested as two-ion streamers dispersed at the upper and lower edges of the spacecraft-the outermost layers of the satellite structure at the top and bottom,respectively.A simulation involving changing the ambient plasma density(N_(p))also showed the formation of local ion focusing,in which ions were more concentrated as the density increased.Furthermore,auroral electron density(N_(ae))variation had no clear impact on ion focusing,as indicated by static two-ion structures in the wake field.However,variation of the object potential(ϕ)strongly affected ion focusing formation,leading to distortion of the initial ion void region behind the spacecraft.The formation of ion focusing in this study was subject to the electric field produced by the object potential and the ambipolar electric field resulting from plasma expansion in the downstream region.
基金supported by the National Key R&D Program of China (Grant No.2022YFA1403201)the National Natural Science Foundation of China (Grant Nos.12125404,T2495231,123B2049,and 12204138)+9 种基金the Advanced MaterialsNational Science and Technology Major Project (Grant No.2024ZD0607000)the Natural Science Foundation of Jiangsu Province (Grant Nos.BK20233001 and BK20253009)the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No.2024ZB002)the China Postdoctoral Science Foundation (Grant No.2025M773331)the Fundamental and Interdisciplinary Disciplines Breakthrough Plan of the Ministry of Education of Chinathe AI&AI for Science program of Nanjing UniversityArtificial Intelligence and Quantum physics (AIQ) program of Nanjing Universitythe Fundamental Research Funds for the Central Universitiesthe Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY224165,NY220038,and NY219087)the Hua Li Talents Program of Nanjing University of Posts and Telecommunications。
文摘We report a theoretical investigation into superconductivity within the MAXH_(6) quaternary hydride system using first-principles calculations,where M and A denote alkali and alkaline earth elements,respectively,and X represents transition metal elements.Systematic analysis of electronic band structures,phonon dispersions,and electron-phonon coupling reveals that substitution of MA binary metal combinations and X metal atoms can create favorable conditions for superconductivity.Mapping of superconducting critical temperatures,combined with dynamical stability analysis through phonon calculations,identifies ten superconducting candidates at ambient pressure.Among these,LiNaAgH_(6) exhibits nearly-free-electron behavior reminiscent of monovalent electron superconductors.It demonstrates exceptional superconducting properties with electron–phonon coupling λ=2.707,which yields a superconducting transition temperature T_(c) of 206.4 K using the Allen–Dynes formula.Its structural analogs MgNaPdH_(6),LiMgPdH_(6),LiMgAgH_(6),LiMgAuH_(6) all exhibit superconducting transition temperatures above 110 K.These findings advance our fundamental understanding of superconductivity in quaternary hydrides and provide guidance for rational design of new high-temperature superconducting materials.
文摘利用Google Earth Engine(GEE)云计算平台,基于改进的CASA模型对鄂尔多斯2001—2020年间的植被净初级生产力(NPP)进行估算,并运用Sen斜率分析和MK趋势分析方法对NPP的时空变化进行深入分析,同时估算了其固碳能力。结果表明:(1)鄂尔多斯2001—2020年间植被NPP呈现明显的季节变化,最高值出现在7—8月,年平均NPP为78.04 g C·m^(-2)·a^(-1),整体呈波动上升趋势。(2)在空间分布上,NPP存在明显的异质性,东北部较高,西北部较低,高值区集中在达拉特旗和准格尔旗,低值区则主要分布在杭锦旗。(3)生态工程的实施与NPP变化并不完全同步,整体呈现先慢后快的特点,大部分区域在2011年后NPP变化速率显著提升,但杭锦旗等生态环境恶劣地区的改善较慢,有一定滞后性。(4)鄂尔多斯固碳量在2011年呈大面积负值,但2020年固碳量空间异质性显著增强,东部较高、西部较低,杭锦旗西部恢复仍需加强,而达拉特旗固碳能力显著提升。