Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for la...Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for landslides. In this paper, a realtime monitoring network and a computer-aided automatic early warning system(EWS) are presented with details of their design and an example of application in the Longjingwan landslide, Kaiyang County, Guizhou Province. Then, according to principle simple method of landslide prediction, the setting of alarm levels and the design of appropriate counter-measures are presented. A four-level early warning system(Zero, Outlook, Attention and Warning) has been adopted, and the velocity threshold was selected as the main warning threshold for the landslide occurrence, but expert judgment is included in the EWS to avoid false alarms. A case study shows the applicability and reliability for landslide risk management, and recommendations are presented for other similar projects.展开更多
Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method...Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production.展开更多
Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base ...Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions.展开更多
基金financially supported by the State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection (Chengdu University of Technology) (Grant No. SKLGP2013Z007)the National Natural Science Foundation of China (Grant No. 41302242)
文摘Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for landslides. In this paper, a realtime monitoring network and a computer-aided automatic early warning system(EWS) are presented with details of their design and an example of application in the Longjingwan landslide, Kaiyang County, Guizhou Province. Then, according to principle simple method of landslide prediction, the setting of alarm levels and the design of appropriate counter-measures are presented. A four-level early warning system(Zero, Outlook, Attention and Warning) has been adopted, and the velocity threshold was selected as the main warning threshold for the landslide occurrence, but expert judgment is included in the EWS to avoid false alarms. A case study shows the applicability and reliability for landslide risk management, and recommendations are presented for other similar projects.
文摘Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production.
基金Under the National Key R&D Program Key Project(No.2021YFC3201201)National Natural Science Foundation of China(No.52360032)+2 种基金Basic Scientific Research Business Fee Project of Colleges And Universities Directly Under the Inner Mongolia Autonomous Region(No.JBYYWF2022001)Development Plan of Innovation Team of Colleges And Universities in Inner Mongolia Autonomous Region(No.NMGIRT2313)the Innovation Team of‘Grassland Talents’。
文摘Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions.